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Bounding Gallager’s Expurgated Bound
Marco Dalai

Abstract—In [1], [2], a modification of the Lovász theta
function, called ϑ(ρ), was introduced for the purpose of studying
error exponents for codes over discrete memoryless channels.
It was mentioned that this function allows one to upper bound
the multi-letter version of Gallager’s expurgated lower bound
on the reliability function, but this property was only proved
for some particular cases. In this letter, we give a general proof
and we show how this can be used for the evaluation of the
expurgated bound. We finally consider some algebraic properties
of the function ϑ(ρ).

I. INTRODUCTION

Let W (y |x), x ∈ X, y ∈ Y, be the transition proba-
bilities of a discrete memoryless channel W : X → Y,
where X = {1, 2, . . . , K } and Y = {1, 2, . . . , J} are finite
sets. When a sequence x = (x1, x2, . . . , xn) ∈ Xn is sent
through the channel, the probability of receiving a sequence
y = (y1, y2, . . . , yn) ∈ Yn at the output is

W (y |x) =
n∏
i=1

W (yi |xi). (1)

The reliability function of a channel is defined as

E(R) = lim sup
n→∞

1
n

log
1

Pe(d2nRe, n)
,

where Pe(M, n) is the smallest possible probability of error
of codes with M codewords of length n. In [3], Gallager
introduced a lower bound on E(R) known as the expurgated
bound. In its most general multi-letter form, the bound says
that E(R) ≥ E (n)

ex (R) where

E (n)
ex (R) = sup

ρ≥1

[
E (n)

x (ρ) − ρR
]
, (2)

E (n)
x (ρ) = −

ρ

n
log min

P
Q(n) (ρ, P) , (3)

Q(n) (ρ, P) =
∑
x1,x2

P(x1)P(x2)gn(x1,x2)
1
ρ , (4)

gn(x1,x2) =
∑
y

√
W (y |x1)W (y |x2) . (5)

Here P runs over distributions on Xn. By restricting P to
be a product distribution, one easily sees that for any k, n,
E (kn)

x (ρ) ≥ E (n)
x (ρ) and, in particular,

E (n)
x (ρ) ≥ E (1)

x (ρ) . (6)

The computation of E (n)
x (ρ) is not simple in general, due to

the fact that the quadratic form Q(n) (ρ, P) is not necessarily
convex. The case where Q(n) (ρ, P) is actually convex for all
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ρ ≥ 1 was considered by Jelinek [4] which showed that in this
case the single-letter version of the bound, i.e., with n = 1,
is not improved by the multi-letter versions, i.e., with n > 1.
In the other cases, the multi-letter version does often improve
the single-letter one, but a quantification of this effect can be
challenging. Indeed, any chosen P will give a lower bound
on E (n)

ex (R), but finding the optimal P, and hence the exact
value of E (n)

ex (R), can be a hard computational problem even
for small values of n.

This purpose of this letter is to point out how a modification
of the Lovász theta function [5], first introduced in [1], [2],
can be used to study the function E (n)

ex (R) and, in particular,
to find upper bounds which might unexpectedly match lower
bounds in some particular cases.

II. THE ϑ(ρ) FUNCTION

For any x ∈ X, let ψx be the unit norm |Y |-dimensional
column vector with components ψx (y) =

√
W (y |x). Simi-

larly, for any x = (x1, x2, . . . , xn), consider the unit norm
|Y |n-dimensional vector ψx with components ψx(y) =√

W (n) (y |x). Since the channel is memoryless, we can write

ψx = ψx1 ⊗ ψx2 ⊗ · · ·ψxn , (7)

where ⊗ is the Kronecker product. In particular, note that with
this notation we can write gn(x,x′) = ψ†xψx′ , so that

E (n)
x (ρ) = −

ρ

n
log min

P

∑
x,x′

P(x)P(x′)(ψ†xψx′ )1/ρ . (8)

Consider now the inner products ψ†xψx′ ≥ 0. For a fixed
ρ ≥ 1, consider a set of “tilted” vectors, that is, unit
norm vectors ψ̃x , x ∈ X, in any Hilbert space such that
|ψ̃†xψ̃x′ | ≤ (ψ†xψx′ )1/ρ. We call such a set of vectors {ψ̃x } an
orthonormal representation of degree ρ of our channel, and
call Γ(ρ) the set of all possible such representations

Γ(ρ) =
{
{ψ̃x } : |ψ̃†xψ̃x′ | ≤ (ψ†xψx′ )1/ρ

}
, ρ ≥ 1. (9)

Note that, since the original ψx vectors satisfy the constraints,
Γ(ρ) is non-empty. The (logarithmic1) value of an orthonormal
representation is the quantity

V ({ψ̃x }) = min
f

max
x

log
1

|ψ̃†x f |2
, (10)

where the minimum is over all unit norm vectors f . Following
Lovász, we call the vector f the handle of the representation.
Call now ϑ(ρ) the minimum value over all representations of
degree ρ,

ϑ(ρ) = min
{ψ̃x }∈Γ(ρ)

V ({ψ̃x }). (11)

1We use a logarithmic definition of the value and of the theta function for
an easier comparison with rates.
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Remark 1: Note that it is always possible to find an optimal
representation and a handle such that ψ̃†x f > 0, ∀x, since
changing any ψ̃x with −ψ̃x gives a valid representation with the
same value. In particular, there exists a representation which
satisfies

ψ̃†x f ≥ e−ϑ(ρ)/2 , ∀x . (12)

As already mention in [1], [2], for any fixed ρ the optimal
representation {ψ̃x } and the value ϑ(ρ) can be efficiently
obtained by solving a semidefinite optimization problem. If
we consider the (K + 1) × (K + 1) Gram matrix

G = [ψ̃1, . . . , ψ̃K, f ]†[ψ̃1, . . . , ψ̃K, f ] ,

we note that finding the optimal representation amounts to
solving the problem

max t
s.t. G(x, K + 1) ≥ t, ∀x ≤ K

G(x, x) = 1, ∀x
G(x, x ′) ≤ (ψ†xψ ′x )1/ρ, x , x ′

G(x, x ′) ≥ −(ψ†xψ ′x )1/ρ, x , x ′

G is positive semidefinite.

(13)

The solution to this problem is t∗ = e−ϑ(ρ)/2, and both the
optimal representation vectors ψ̃x , x ∈ X, and the handle f
can be obtained by means of the spectral decomposition of the
optimal G found.

III. BOUNDING THE EXPURGATED BOUND

Consider the K×K matrix, say G(ρ), whose (x, x ′) element
takes value (ψ†xψx′ )1/ρ. As already mentioned, it was proved
by Jelinek [4] that E (n)

x (ρ) = E (1)
x (ρ) for all n if G(ρ) is

positive semidefinite. Jelinek studied a class of channels for
which the matrix G(ρ) is positive semidefinite for all ρ ≥ 1
and for which, thus, the expurgated bound computed for blocks
of n symbols is the same as computed for just one symbol.
For a general channel W and sufficiently large ρ, however,
G(ρ) need not be positive semidefinite, and finding the exact
value of E (n)

x (ρ) is a complex problem even for small n. The
function ϑ(ρ) allows us to bound E (n)

x (ρ), as stated in the
following theorem.

Theorem 1: For any channel W , any real ρ ≥ 1 and any
integer n ≥ 1,

E (n)
x (ρ)
ρ

≤ ϑ(ρ) , (14)

with equality if G(ρ) is positive semidefinite.
Remark 2: It was already proved in [2] that the above

inequality holds if, for the optimal representation {ψ̃x }, all the
inner products ψ̃†xψ̃x′ are non-negative. Here we remove this
assumption and, at the same time, give a much simpler proof.
Note also that it was already observed in [2] that equality
holds in (14) if G(ρ) is positive semidefinite, that is, when
evaluation of E (n)

x (ρ) is simple. Hence, the interesting use of
(14) is when G(ρ) is not positive semidefinite.

Proof: Let {ψ̃x } be an optimal representation of degree
ρ with handle f satisfying (12). For an input sequence x =
(x1, x2, . . . , xn) call, in analogy with (7), ψ̃x = ψ̃x1 ⊗ ψ̃x2 ⊗

· · · ψ̃xn . Observe first that, for any two input sequences x and
x′, we have

|ψ̃†xψ̃x′ | =

n∏
i=1
|ψ̃†xi ψ̃x′i

| (15)

≤

n∏
i=1

(ψ†xiψx′i
)1/ρ (16)

= (ψ†xψx′ )1/ρ . (17)

Consider the argument of the log in definition of E (n)
x (ρ). For

any fixed distribution P over Xn, we have∑
x,x′

P(x)P(x′)(ψ†xψx′ )1/ρ ≥
∑
x,x′

P(x)P(x′) |ψ̃†xψ̃x′ |

≥

������

∑
x,x′

P(x)P(x′)ψ̃†xψ̃x′

������

=



∑
x

P(x)ψ̃x



2

.

Set now f = f ⊗n. Since ‖f ‖2 = 1, by the Cauchy-Schwartz
inequality we have



∑
x

P(x)ψ̃x



2

≥

������

∑
x

P(x)ψ̃†xf
������

2

.

Since for our representation we have ψ̃†x f ≥ e−ϑ(ρ)/2, ∀x, we
then have, for all x,

ψ̃†xf =

n∏
i=1

ψ̃†xi f (18)

≥ e−nϑ(ρ)/2 , (19)

from which we deduce that∑
x

P(x)ψ̃†xf ≥ e−nϑ(ρ)/2 . (20)

Thus, for any fixed distribution P over Xn∑
x,x′

P(x)P(x′)(ψ†xψx′ )1/ρ ≥ e−nϑ(ρ) , (21)

which immediately implies that

E (n)
x (ρ)
ρ

≤ ϑ(ρ). (22)

We now show that if G(ρ) is positive semidefinite then
equality holds for all n. First note that, as observed by Jelinek,
if G(ρ) is positive semidefinite then E (n)

x (ρ) = Ex (ρ), and the
optimizing P for n = 1 satisfies∑

x′

P(x ′)(ψ†xψx′ )1/ρ ≥
∑
i,k

P(i)P(k)(ψ†i ψk )1/ρ , (23)

with equality for all x such that P(x) > 0. Since G(ρ) is
positive semidefinite, there exist vectors {ψ̃x } such that

ψ̃†i ψ̃k = (ψ†i ψk )1/ρ , (24)
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implying that {ψ̃x } constitute a valid representation of degree
ρ. Then, the condition above for the optimality of P can be
written as

ψ̃†x
*
,

∑
x′

P(x ′)ψ̃x′
+
-
≥ *

,

∑
i

P(i)ψ̃i
+
-

†

*
,

∑
k

P(k)ψ̃k
+
-
, (25)

with equality whenever P(x) > 0. Considering the unit norm
vector

f =
∑

k P(k)ψ̃k


∑

k P(k)ψ̃k

, (26)

this condition can be rewritten as

ψ̃†x f ≥


∑
k

P(k)ψ̃k


, (27)

which implies

log
1

|ψ̃†x f |2
≤ − log



∑
k

P(k)ψ̃k



2

(28)

= − log *.
,

∑
i,k

P(i)P(k)(ψ†i ψk )1/ρ+/
-

(29)

=
Ex (ρ)
ρ

. (30)

This shows that V ({ψ̃x }) ≤ Ex (ρ)/ρ and hence ϑ(ρ) ≤
Ex (ρ)/ρ. Since we earlier proved that ϑ(ρ) ≥ Ex (ρ)/ρ we
must have equality.

IV. EXAMPLE OF APPLICATION

We show in this section an example of use of ϑ(ρ) for
numerically computing or bounding the expurgated bound of
channels.

Consider the channel with four inputs and four outputs
shown in Figure 1. For this channel the matrix G(ρ) is given
by

G(ρ) =
*....
,

1 .21/ρ 0 0.21/ρ

21/ρ .681/ρ .161/ρ .041/ρ

0 .161/ρ .681/ρ 0
.21/ρ .041/ρ 0 .681/ρ

+////
-

, (31)

which is positive semidefinite if and only if ρ ≤ ρ̄, where
ρ̄ ≈ 2.47927. For ρ > ρ̄, one can try to solve the minimization
in (3) numerically, but since G(ρ) is not positive semidefinite
it is not easy to determine whether a minimum has really
been found. So, in general one determines a provable lower
bound on E (1)

x (ρ). Figure 2(a) shows the results obtained
when attempting to compute E (1)

x (ρ) using the Matlab func-
tion fmincon and the value (numerically reliable) of ϑ(ρ)
determined by solving problem (13) using the library cvx.
Since the two plots match, using (6) and (14) we deduce
two important facts: that our evaluation of E (1)

x (ρ) is correct
and that E (n)

x (ρ) = E (1)
x (ρ) for the range of values of ρ

tested. Figure 2(b) shows the resulting plot of the expurgated
bound, which tells us another interesting fact, that is that the
expurgated bound only improves the random coding bound

Fig. 1. Channel for which we compare Ex (ρ)/ρ and ϑ in Figure 2.

at rates2 R < 0.6951, which is only very slightly larger than
log(2) ≈ 0.9631, the zero-error capacity. This example shows
that ϑ(ρ) can be used as an effective tool for studying E (n)

ex (R)
in those situations where Jelinek’s study does not apply.

V. ON THE ALGEBRAIC PROPERTIES OF ϑ(ρ)

It seems legitimate to ask whether the function ϑ(ρ) pre-
serves some of the very interesting properties of Lovász’s
ϑ. Here we show how one of the representations derived
by Lovász changes when we force the representations to be
in Γ(ρ). The theorem presented in this section generalizes
Lovász’s [5, Th. 3].

For any γ > 0, let A(γ) be the set of symmetric n × n
matrices A = (ai, j ) such that

ai,i = 1
|ai, j − 1| ≤ γ (ψ†i ψ j )1/ρ, i , j .

Define then the function

r (γ) = inf
A∈A(γ)

λmax(A) , (32)

where λmax(A) represents the largest eigenvalue of the matrix
A.

Theorem 2: ϑ(ρ) = log γ∗, where γ∗ is the only solution of
the equation γ = r (γ).

Proof: We first prove that the equation γ = r (γ) has one
unique solution. Note that the A(γ) ⊆ A(γ′) if γ < γ′, which
implies that r (γ) is a non-increasing function. Furthermore, if
A1 ∈ A(γ1) and A2 ∈ A(γ2) then, for any α ∈ [0, 1], the
matrix A = αA1 + (1 − α) A2 is in A(αγ1 + (1 − α)γ2) and
λmax(A) ≤ αλmax(A1) + (1 − α)λmax(A2). This implies that
r (γ) is a convex function of γ and, hence, it is continuous.
Since r (γ) is non-increasing and continuous, there is only one
solution γ∗ to the equation r (γ) = γ. We now proceed to the
proof that the solution is γ∗ = eϑ(ρ) .

We first prove that eϑ(ρ) ≥ γ∗. Let {ψ̃x } be a representation
of degree ρ with handle f and consider the matrix A with
elements

ai,i = 1

ai, j = 1 −
ψ̃†i ψ̃ j

(ψ̃†i f )(ψ̃†j f )
, i , j .

2The exact computation of E (n)
x (ρ) implies that the computation of

E (n)
ex (R) is guaranteed to be correct for R > ϑ(ρmax), where ρmax is the

largest ρ tested, since larger values of ρ might improve E (n)
ex (R) only at

lower rates. In our computation, we had ρmax = 1000 and ϑ(ρmax) ≈ 0.6933.
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Fig. 2. Numerical results for the channel defined in Figure 1. The red line in Figure 2(a) represents the largest ρ for which G(ρ) is positive semidefinite.

Note that A ∈ A(eϑ(ρ)), since |ψ̃†i ψ̃ j | ≤ (ψ†i ψ j )1/ρ and
|ψ̃†x f | ≥ e−ϑ(ρ)/2,∀x. Then, as in [5, Th. 3], we have

−ai, j =
(

f −
ψ̃i

f †ψ̃i

)† (
f −

ψ̃ j

f †ψ̃ j

)
, i , j, (33)

and

eϑ(ρ) − ai,i =


f −
ψ̃i

f †ψ̃i



2
+

(
eϑ(ρ) −

1
‖ f †ψ̃i ‖

2

)
. (34)

This implies that eϑ(ρ) I−A is positive semidefinite, and hence
the largest eigenvalue of A is at most eϑ(ρ) , implying that
r (eϑ(ρ)) ≤ eϑ(ρ) or, in other words, that eϑ(ρ) ≥ γ∗.

Conversely, we prove that eϑ(ρ) ≤ γ∗. To do this, we prove
that if γ1 > γ∗, then eϑ(ρ) < γ1. Let then γ1 > γ∗, so that
r (γ1) < γ1. Since r (γ) is continuous, there exists a γ < γ1
such that r (γ) < γ as well. For this γ, let A be a matrix
in A(γ) achieving r (γ), that is λmax(A) = r (γ). Then, since
γ > r (γ) = λmax(A), the matrix γI−A is positive semi-definite
and there exists a set of n vectors {vi } such that

γδi j − ai, j = v†i vj , (35)

where δi j is the Kronecker delta. Let f be a unit norm
vector orthogonal to all the vi (expand the space dimension if
necessary) and set

ψ̃i =
1
√
γ

( f + vi) , (36)

so that

ψ̃†i ψ̃ j =
1
γ

(1 + v†i vj ) (37)

=
1
γ

(1 + γδi j − ai, j ). (38)

Since A ∈ A(γ), we then easily check that

ψ̃†i ψ̃i = 1

and

|ψ̃†i ψ̃ j | =
|1 − ai, j |

γ

≤ (ψ†i ψ j )1/ρ,

so that the vectors {ψ̃i } form an orthogonal representation of
degree ρ for the channel. Furthermore, we find that for all i,

1
ψ̃†i f

=
√
γ, (39)

which means that the value of this representation is not larger
than log γ. Hence, ϑ(ρ) ≤ log γ < log γ1 or, in other words,
eϑ(ρ) < γ1 as was to be proven.

As in [5], the last part of the proof above, used with γ =
γ∗ = eϑ(ρ) , also implies the following result.

Theorem 3: There always exists a representation {ψ̃x } of
degree ρ with handle f such that

ψ̃†i f = e−ϑ(ρ)/2, ∀i. (40)

VI. CONCLUSIONS

We presented a technique for bounding, and in certain cases
numerically compute the multi-letter version of Gallager’s
expurgated bound E (n)

ex (R). The procedure is based on an
extension of Lovász’s method for bounding the capacity of
graphs.
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