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Abstract—A modified derivation of achievability results in classical-quantum channel coding
theory is proposed, which has, in our opinion, two main benefits over previously used methods:
it allows to (i) follow in a simple and clear way how binary hypothesis testing relates to channel
coding achievability results, and (ii) derive in a unified way all previously known random coding
achievability bounds on error exponents for classical and classical-quantum channels.
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1. INTRODUCTION

Random coding has been used as a primary tool in achievability results since the early days of
information theory [1–3]. Extensions of classical results allowed to derive the capacity [4–7] and
achievable error exponents [8–10] for classical-quantum channels. In particular, the achievability
proof for the capacity of a general mixed-state channel is derived in [6], and an achievable error
exponent for pure-state channels is derived in [8], which formally coincides with the one for classical
channels [3] and matches a converse bound derived in [11, 12]. In [9] Holevo conjectured that a
formal extension of the classical bound also holds for general mixed-state channels, but no proof
up to now has been obtained. The best known achievable exponent for mixed-state channels is
Hayashi’s [10].

The above-mentioned results were derived by combining the idea of random coding, i.e., the
study of the average performance of random codes, with different choices of measurements used at
the receiver. The measurements used in [4–6] extend the typicality method [13] and do not provide
satisfactory bounds on error exponents at rates R smaller than the capacity. The “pretty good
measurement” used in [8] allows one to prove achievability of Gallager’s exponent for pure-state
channels and, in a modified form [9], for classical channels, but it does not seem to be amenable to
generalizations to arbitrary mixed-state channels. Hayashi proves achievability of a positive expo-
nent in [10] for arbitrary mixed state channels using the method introduced in [7], which reduces the
achievability proof in channel coding theory to an achievability proof in binary hypothesis testing
(see [14] for recent results on the connection between multiple and binary hypothesis testing in the
quantum setting). In particular, the binary hypothesis used in [7] is between a given codeword and
a fixed (i.e., code-independent) expected state. This procedure resembles Shannon’s first approach
to error exponents [15]; it has the advantage of applying to general mixed-state channels, but, on
the other hand, it does not recover the optimal Gallager’s exponent for classical channels.

In this paper we present an additional possible choice for the measurement and the associated
error analysis. It has the following benefits: (i) it shows in a clear way how the channel coding
problem can be reduced to binary hypothesis testing even for the most powerful error exponent
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achievability results, and (ii) to the best of the author’s knowledge, it is the only “unified proof”
which gives at the same time all the above-mentioned achievability results for capacity and error
exponents [3,6,8,10]. The main innovation with respect to the proofs in [7,10] relies on the fact that
we use a binary hypothesis test between a codeword and an empirical average (code-dependent)
tilted codeword. This allows us to recover at the same time the results of [10] for general channels
and the correct exponent for classical channels.

We close with the observation that, since Holevo’s conjecture on the achievability of Gallager’s
exponent [9] has not been either proved or disproved yet, we believe that any new derivation of
achievability results in classical-quantum channel coding is worth being investigated.

In our analysis, we will need the following results from the literature (or slight variations thereof).

Lemma 1 ([7, Lemma 2] with c = 1). For operators 0 ≤ S ≤ I and T ≥ 0, we have

I − (S + T )−1/2S(S + T )−1/2 ≤ 2(I − S) + 4T. (1)

Given a self-adjoint operator A with spectral decomposition A =
∑

i
λiEi, where the λi are the

operator eigenvalues and the Ei are the orthogonal projectors on the associated eigenspaces, we set
by definition

{A ≥ 0} =
∑

i:λi≥0

Ei, {A < 0} =
∑

i:λi<0

Ei. (2)

Then we have the following lemma.

Lemma 2 (variation of Lemma 1 in [10]). For any two positive semidefinite operators A and B
and real s ∈ [0, 1], setting t = max(s, 1− s), we have

TrAsB1−s ≥ Tr[{At −Bt ≥ 0}B] + Tr[{At −Bt < 0}A]. (3)

Proof. We start with Lemma 1 in [10], which states that for 0 ≤ s ≤ 1/2

TrAsB1−s ≥ Tr[{A1−s −B1−s ≥ 0}B] + Tr[{A1−s −B1−s < 0}A]. (4)

By inspection of the proof we see that the following similar inequality also holds for 0 ≤ s ≤ 1/2:

TrAsB1−s ≥ Tr[{A1−s −B1−s > 0}B] + Tr[{A1−s −B1−s ≤ 0}A],

which we can rearrange as

TrAsB1−s ≥ Tr[{B1−s −A1−s ≥ 0}A] + Tr[{B1−s −A1−s < 0}B].

Swapping the roles of A and B, we get for 0 ≤ s ≤ 1/2

TrA1−sBs ≥ Tr[{A1−s −B1−s ≥ 0}B] + Tr[{A1−s −B1−s < 0}A],

which can also be stated as

TrAsB1−s ≥ Tr[{As −Bs ≥ 0}B] + Tr[{As −Bs < 0}A]

for 1/2 ≤ s ≤ 1. This, together with (4), proves (3).
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2. PROPOSED MEASUREMENT AND ERROR ANALYSIS

We derive our analysis in a “one-shot” setting, i.e., derive an upper bound on the probability of
error in a classical-quantum communication by means of M given quantum states, each associated
to one of M different messages, when a properly chosen positive operator-valued measurement
(POVM) is used at the receiver to decide between the possible messages. We then use this to
compute an upper bound on the the average probability of error over an ensemble of random codes
with i.i.d. signals, later also considering the case where signals are randomly generated as tensor
products of random i.i.d. density operators from some fixed finite set.

Let W1, . . . ,WM be finite-dimensional density operators representing the signals associated
to M different messages. A decoder is defined in terms of a POVM (see [16,17]), i.e., a set of M pos-
itive semidefinite hermitian operators {Yi}i=1,...,M such that

∑

i
Yi ≤ I. Consider a variation of the

POVM used in [7] defined by

Yi =

(∑

j

πj

)−1/2

πi

(∑

j

πj

)−1/2

, (5)

where πi is the following parametrized projector:

πi =

{

W t
i −

(∑

j �=i

W r
j

)t
r

> 0

}

, t = max(rρ, 1− rρ), 0 ≤ r, ρ ≤ 1. (6)

This is another possible way of extending the classical approach to the quantum case, which does

not seem to have been considered up to now. In particular, note that the operator
(∑

j �=i
W r

j

) 1
r
, which

depends on the code at hand, plays a similar role as the fixed code-independent operator W
(n)

P (n)

used in [7, Lemma 3]. Thus, we depart from [7, Lemma 3] in that we consider binary hypothesis
tests between codewords and a code-dependent “average” state (with some tilting).

Using Lemma 1, we have
I − Yi ≤ 2(I − πi) + 4

∑

j �=i

πj . (7)

Hence, the average probability of error of the code using the described POVM can be bounded as

Pe =
1

M

∑

i

Tr[Wi(I − Yi)] (8)

≤ 2
1

M

∑

i

Tr

[

Wi

{

W t
i −

(∑

j �=i

W r
j

)t
r

≤ 0

}]

(9)

+ 4
1

M

∑

i

∑

j �=i

Tr

[

Wi

{

W t
j −

(∑

k �=j

W r
k

)t
r

> 0

}]

. (10)

Let us first consider the term in (9). Using Lemma 2, remembering that by definition t =
max(rρ, 1− rρ), the ith term in the sum can be bounded as

Tr

[

Wi

{

W t
i −

(∑

j �=i

W r
j

)t
r

≤ 0

}]

≤ Tr

[

W 1−rρ
i

(∑

j �=i

W r
j

)ρ]

. (11)

The second term of the error probability, i.e., (10), can be rewritten by interchanging the order of
summation as

4
1

M

∑

j

Tr

[(∑

i �=j

Wi

){

W t
j −

(∑

k �=j

W r
k

)t
r

> 0

}]
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or, renaming indices in the sums,

4
1

M

∑

i

Tr

[(∑

j �=i

Wj

){

W t
i −

(∑

j �=i

W r
j

)t
r

> 0

}]

. (12)

A possible attempt to bound the ith term in this sum could be as follows. For classical channels2

we can use the bound (∑

j �=i

Wj

)r

≤
∑

j �=i

W r
j , (13)

valid for all 0 ≤ r ≤ 1, to conclude that

∑

j �=i

Wj ≤
(∑

j �=i

W r
j

)1/r

. (14)

Alternatively, for general channels the above inequality works obviously for r = 1. Then we can
use Lemma 2 to obtain for the ith term the bound

Tr

[(∑

j �=i

Wj

){

W t
i −

(∑

j �=i

W r
j

)t
r

> 0

}]

≤ Tr

[(∑

j �=i

W r
j

)1/r{

W t
i −

(∑

j �=i

W r
j

)t
r

> 0

}]

≤ Tr

[(∑

j �=i

W r
j

)ρ

W 1−rρ
i

]

,

which is thus valid for all r for classical channels and for r = 1 for all channels. This has the same
form as in equation (11), and hence we deduce

Pe ≤ 6
1

M

∑

i

Tr

[

W 1−rρ
i

(∑

j �=i

W r
j

)ρ]

. (15)

This is our “one-shot” upper bound on the probability of error for a given specific code. Taking
the expected value over an ensemble of codes with i.i.d. selection of the states Wi, we can upper
bound the expected value of the probability of error as

E[Pe] ≤ 6
1

M

∑

i

E

[

Tr

[

W 1−rρ
i

(∑

j �=i

W r
j

)ρ]]

= 6Tr

[

E
[
W 1−rρ

1

]
E

[(∑

j �=1

W r
j

)ρ]]

(a)

≤ 6Tr

[

E
[
W 1−rρ

1

]
(

E

[∑

j �=1

W r
j

])ρ]

= 6(M − 1)ρ Tr
[
E[W 1−rρ]E[W r]ρ

]
, (16)

which again is valid for any r for classical channels and with r = 1 for any channel. Here, W is
a generic random signal of which signals W1,W2, . . . are i.i.d. extractions. In inequality (a) above
we have used the operator concavity of the map A �→ Aρ, 0 ≤ ρ ≤ 1.

2 We point out that for classical channels the whole double summation in (10) is not really necessary. Since

all the Wi are diagonal in the same basis, the πi can be written as πi =

{

Wi >
(∑

j �=i

W r
i

)1/r
}

and are

all pairwise orthogonal (in particular, a common eigenvector ψ of the Wi is in the range of πi only if the
eigenvalue of Wi associated to ψ is larger than that of any other of the states Wj , j �= i). We could then
define Yi = πi, adding an extra operator Ye = I−

∑

i

πi which accounts for extra errors, avoiding the use of

the Hayashi–Nagaoka lemma. This boils down to one of the possible presentations of the classical bound.
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For classical channels we can now set as usual r = 1/(1+ρ) to obtain—apart from coefficients—
the standard random coding bound

E[Pe] ≤ 6(M − 1)ρ TrE[W 1/(1+ρ)]1+ρ. (17)

For general channels, instead, the bound in (16) only holds with r = 1, which gives

E[Pe] ≤ 6(M − 1)ρ Tr
[
E[W 1−ρ]E[W ]ρ

]
, (18)

which equals Hayashi’s exponent [10]. For pure-state channels this expression clearly equals (17)
and hence gives again the correct random coding exponent, which can be written in simplified
form as

E[Pe] ≤ 6(M − 1)ρ TrE[W ]1+ρ. (19)

We observe that while for general channels the bound in (18) is not the one conjectured by
Holevo, it is good enough to prove achievability of the capacity. This follows already from [7,10], but
we recast its derivation here for completeness. In fact, assuming as usual that the randomization
is such that the W are tensor products of independent identically distributed states, i.e., W =
S1 ⊗ S2 . . . ⊗ Sn with the Si distributed i.i.d. as some random state S with values in a fixed finite
set, we find

E[Pe] ≤ 6enRρ Tr
[
E[S1−ρ]E[S]ρ

]n
. (20)

Hence, the probability of error vanishes exponentially with n for all rates R such that

R ≤ −
log Tr

[
E[S1−ρ]E[S]ρ

]

ρ
. (21)

As ρ → 0, the bound on R can be computed as usual using L’Hôpital’s rule as

R < −
Tr

[
−E[S1−ρ log S]E[S]ρ

]
+Tr

[
E[S1−ρ]E[S]ρ logE[S]

]

Tr
[
E[S1−ρ]E[S]ρ

] , (22)

which as ρ → 0 gives

R < E[Tr(S log S)]− Tr[E[S] logE[S]], (23)

and hence achievability of all rates below the capacity.

Thus, the proposed (parametrized) POVM achieves the reliability function of classical and pure-
state channels as well as Hayashi’s exponent and hence the capacity of any channel. A question
which remains open is whether the POVM is provably not good enough to achieve the conjectured
random coding exponent (17) for general channels or if it is the analysis which is not tight enough.

3. A CLOSING COMMENT

A personal impression of the author is that if Holevo’s conjecture holds, then there should be
a hope of proving it by reducing the estimation of the probability of error of a code to a binary
hypothesis test between a state Wi and (a scaled version of) the state E[W 1/(1+ρ)]1+ρ (the bound
is then precisely the scale parameter). The above procedure has perhaps the advantage of showing
the hypothesis testing road fairly clearly for classical and for pure-state channels. But still, there
is a huge problem for general channels, since (14) cannot be applied. It is interesting to observe
that, using (14) in our derivation for classical channels, we essentially use the same property used
by Holevo in [9] for the same setting, but—at least to this author—the way that this requirement
emerges looks different.
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A final observation seems in order. The first proof of the optimal achievable error exponent in
random coding for general classical channels was derived by Fano [2]. His proof, while being longer
and less elegant than Gallager’s one, has the benefit of deriving the right exponent while using a
starting point very similar to Shannon’s [15, Theorem 1, last equation on p. 9] and particularly
fit to the binary hypothesis testing formulation, which is instead lost in Gallager’s shorter proof.
A detailed and clear description of those proofs and of their relations and applications can be found
in [18]. The measurement proposed here for classical-quantum channels is in a sense an attempt
to modify the method in [7, 10], which is similar to Shannon’s [15], in a way similar to what was
done by Fano. Still, the procedure does not go through in the goal of proving Holevo’s conjecture.
In this author’s opinion, the key point relies on a tool which Fano uses and which does not seem
to have a counterpart in the quantum theory yet. Fano bounds the probability that one random
variable is less than another by applying large deviation results to their difference. When we try
to isolate the simplest possible scenario for such a problem, it seems that the analog quantum tool
needed (at least to start with) is a way to bound

TrA⊗n{B⊗n − C⊗n > 0} (24)

as a function of n in terms of A, B, and C. The Chernoff bound corresponds to the particular case
A = C. In particular, we would need a bound on

TrA{B − C > 0} (25)

which is multiplicative under tensor products. Assuming that a “tilting” trick could be used in
this case as in binary hypothesis testing [19], one could perhaps hope to succeed by studying the
quantity

TrA{Bt −Ct > 0}. (26)

Note that this is actually the problem that we have in (12), and the reason why we would like to
use (14) is precisely because we have to make A = C to get back to the Chernoff bound.
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