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ABSTRACT

Many second generation image coding techniques have been

studied in recent years. Most of these methods consider the

l2 norm of the error introduced in the coded image, while

for the l∞ case only predictive or transform based methods

were considered up to now, focusing on near-lossless cod-

ing. In this paper we present a first scheme for l∞ norm

in the framework of second generation image coding. The

image is adaptively segmented into rectangular regions of

varying size leading to a binary tree decomposition. The

grey levels of the pixels within every leaf are approximated

by means of l∞ sub-optimal bilinear surfaces.

1. INTRODUCTION

The field of image coding has received a lot of attention in

recent years and different methods have been studied, rang-

ing from transform based, to predictive based and segmenta-

tion based ones. Second generation coding techniques have

demonstrated better performance at high compression ra-

tios. The performance evaluation is in general determined

using the SNR value, i.e. by evaluating the l2 norm of the

introduced error. The study of the l∞ error measure, in

fact, has been limited to near-lossless coding up to now. In

this case one is interested in a very small error (typically

a maximum error of 4 over 256 levels) and, for this task,

transform based and prediction based techniques have been

studied ([1, 2]). The use of the l∞ norm for wider ranges

of error value, and in the framework of second generation

image coding, seems to have received little interest up to

now. In this paper we present a simple segmentation based

image coding method with l∞ norm error control. The im-

age is adaptively divided into rectangular areas. The result

partition determines a binary tree. Each leaf of the tree is

coded by using a bilinear l∞ sub-optimal approximation to

the pixel grey levels; the value of the bilinear surface at the

corners of the rectangles are coded, so that in the decoding

phase only bilinear interpolation of these values is required

to reconstruct the image within each rectangle.

The paper is organized as follow. We first explain how

to construct an optimal bilinear approximation of grey levels

over a rectangular domain; we show then how a sub-optimal

solution can be derived so as to gain in computational effi-

ciency and address the image decomposition phase. The

segmentation algorithm is then described, followed by a de-

scription of the coding strategy. In particular for each rect-

angle only the values of its four corner need to be specified

within the original quantization resolution. Finally some

experimental results in coding standard images are shown.

2. l∞ BILINEAR APPROXIMATIONS

2.1. Stating the problem

Given a signal s(x, y) defined over a discrete grid in a rect-

angular domain D = {(x, y) : x0 ≤ x ≤ x1, y0 ≤ y ≤ y1}
we aim at finding a function f , of the form f(x, y) = axy+
bx + cy + b, that is a good approximation to s under the l∞
norm. We start by saying that, as a, b, c and d parameters

determine a linear space, finding their optimal values (ac-

cording to a l∞ criterion) can be reduced to solving a linear

program in R
5 ([3, 4]). By using recent linear program-

ming techniques (see [5]) one can thus solve the problem

in O(n) expected operations, being n the number of im-

age samples. Nevertheless, the use of this methods can be

considered computationally expensive when applied to im-

ages. Furthermore, by using such techniques, one can only

determine whether or not the signal can be approximated

within the domain of interest below an error threshold, and

one has no idea of what is the local behavior of the signal s
inside D. This means that if it becomes necessary given the

problem constraint (error threshold) to divide D in two sub-

rectangles in an adaptive way, one has to choose a partition

line by studying s in some other manner.

For these reasons we propose to adopt a separable ap-

proach in constructing a sub-optimal approximation f of s.

Given that the function f is linear in x for every fixed y
and viceversa, we perform optimal straight line approxima-

tion of s along every row and column of D respectively.
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Fig. 1. Construction of the sub-optimal bilinear approximation.

However, such straight lines may not belong to a bilinear

approximation, as their intersections with the image rectan-

gle support boundaries do not necessarily lie on a straight

line.

2.2. Sub-Optimal Approximations

Suppose the domain D has R rows and C columns. For

every r = 1 . . . R we compute the l∞ optimal linear ap-

proximation of the r-th row of s; as explained in [6] this

can be done in a very efficient way by means of geometric

arguments (roughly speaking, 8 times faster than linear pro-

gramming method). Such geometric approach determine at

the same time the approximation error and a subset of three

points of the row, which we call pivot points, where the ap-

proximation commits its maximum error (see fig. 1a, where

A, B and C are the pivots). For every r we thus obtain a

segment l(r) which has an associated error e(r); this seg-

ment intersect the planes x = x0 and x = x1 in two points

that we call respectively q0(r) and q1(r). Let us focus on

the points q0(r), r = 1 . . . R (without loss of generality this

applies also to the points q1(r) and their equivalent along

each column). They all lie in the plane x = x0 but, in the

general case, they are not aligned. If we want the segments

l(r) to belong to a bilinear surface, it is necessary to ver-

tically move the extremes q0(r) so as to align them. The

corresponding line is not, in this case, necessarily the l∞
optimal one. Suppose we approximate the points q0(r) with

a line g which takes value g(r) at the r-th row. We indicate

with ε0(g; r) the approximation error of g over the point

q0(r) that is ε0(g; r) = |g(r) − q0(r)|. Remember that the

generic straight line l(r) has a maximal error e(r) over the

row r; if we force its extremity to move from q0(r) to g(r),
an error less than or equal to ε0(g; r) is added to e(r); so,

we can state that the total error is at most e(r) + ε0(g; r).
Thus, a good idea is to select as optimal straight line ap-

proximation of the points q0(r) the line h given by

h = arg min
g

(

max
r

(e(r) + ε0(g; r))
)

. (1)

For every r, consider the points q+

0 (r) and q−0 (r) obtained

by moving respectively up and down the point q0(r) of a

value e(r). Then it is easy to see that

e(r) + ε0(g; r) = max(|g(r) − q+

0 (r)|, |g(r) − q−0 (r)|).

Thus, the line h that minimizes (1) is the l∞ optimal ap-

proximation of the set of points {q+

0 (r), q−0 (r)}r=1...R. The

same arguments1 hold in the plane x = x1, so that we

can construct a bilinear surface. It is obvious that the same

scheme can be used by interchanging the roles of rows and

columns, i.e. linear approximating the columns and then

adjusting the extremities of the straight lines in the planes

y = y0 and y = y1. In this way we find two generally

different solutions, and obviously we choose the one with

smallest error.

The main advantage of using this suboptimal approxi-

mation, in comparison with the optimal one given by the

linear programming techniques, is that the execution time is

about 10 times smaller, while the error of approximation is

not substantially greater. Moreover, the suboptimal approx-

imation provides an indication of the local approximations

error on each row and column, which is a good hint for the

segmentation task, as it is shown in the next section.

3. SEGMENTATION

Now, we show which criterion has been designed to build

the decomposition of the image. The segmentation scheme

is based on a binary tree structure. The image is initially ap-

proximated by a bilinear surface; if the error is larger than

a given bound δ, the image is split in two smaller rectan-

gles (not necessary equal) by dividing it along a vertical or

horizontal line. The procedure is then applied recursively to

each rectangle, until every leaf of the tree is approximated

with a maximum error smaller than δ, or the area is so small

that it is cheaper to represent every of its pixels rather than

1It is important to note that when approximating the points q1(r) with a

line j(r), the error to be considered is just e(r) + ε1(j; r) and not e(r) +
ε0(g; r) + ε1(j; r). This means that ε0(g; r) and ε1(j; r) must not be

summed, because when moving the line l(r) the total l∞ error is actually

at most e(r) + max(ε0(g0; r), ε1(j; r)).
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constructing the optimal bilinear approximation of any fur-

ther subdivision, in a rate distortion sense.

At every recursion level the partitioning line is chosen

as follows. We identify the row or the column such that the

error committed by its minmax straight line approximation

(e(r) or e(c)) is the largest with respect to all values of r and

c. As mentioned previously, the maximum error is always

occurring at one of the three pivots of the row or column

pixels. We set then the partition line to be orthogonal to

the selected row or column close to its central pivot point.

This pivot point is left on one side or the other based on the

collinearity with the two consecutive or preceding points.

Once the partition line has been selected, the procedure is

applied to each sub-rectangle.

It is important to note that, if for example the partition

line is vertical, after dividing the domain one does not need

to recompute the straight approximation of the columns, as

there is no difference with respect to the preceding step. The

same thing holds for horizontal partitions. This means that

at every recursion level one has to compute either row ap-

proximations, or the column ones. This leads to a reduction

of 50% in computation, which overall makes the algorithm

about 20 times faster than using a linear programming ap-

proach.

4. CODING

Now that the segmentation method has been described, the

following coding method has been designed. The tree struc-

ture is coded as usual; one bit is needed for every node, to

specify whether it is a leaf or not. If the node is not a leaf,

one bit is spent to code the direction, horizontal or vertical,

of the partition line; in addition at most log2(R) or log2(C)
bits are necessary to identify the position of the partition

line (note that R and C are the dimensions of the rectangle

that is being partitioned). If, instead, the node is a leaf, then

it is necessary to code the bilinear surface approximation of

the pixels. For this purpose it is sufficient to code the values

of the surface on the corners of the rectangle, by quantiz-

ing them with the same precision as the one of the original

image. The motivation is the following. Suppose that we

want to code an image s with a maximum error δ, which is

an integer value. We segment the image so as to obtain, in

each rectangle, bilinear approximations with error less than

δ. Let us call f the obtained surface in a given rectangle;

when coding f we quantize the values reached at the cor-

ners of the rectangle. This means that, when decoding, we

obtain2 a different surface f̃ . Clearly, within the rectangular

domain, ‖f − f̃‖∞ ≤ 1/2. Furthermore, when computing

the real values of the pixel inside the rectangle, we have to

quantize f̃ so as to obtain a integer-valued reconstruction s̃

2Be aware of the fact that a bilinear surface is constructed by linearly

interpolating the values on the four corners of a rectangle

of the original image. Again we have ‖s̃ − f̃‖ ≤ 1/2. Thus

we can say that

‖s − s̃‖ ≤ ‖s − f‖ + ‖f − f̃‖ + ‖f̃ − s̃‖ < δ + 1,

so that, as ‖s − s̃‖ must be an integer, ‖s − s̃‖ ≤ δ.

This means that if one constructs approximations with error

smaller than the maximum value δ, then one does not need

to care about the effect of quantization made at every corner.

In the coding phase, it is clearly possible to use predic-

tion. If we code the image in a recursive way, starting with

the top left rectangles first, we are sure that when any new

rectangle is reached, all in left and above neighbors have

been already coded. So, the values of the bilinear surface

on its corners can be predicted from the pixel values above

or to the left. A very simple first order prediction scheme

has been selected in this work but a more accurate study of

the involved statistics could improve further the results.

5. SIMULATIONS

For testing the proposed method, we demonstrate its per-

formance in coding two standard images, namely Lena and

Bird images, of 256 × 256 pixel, 8 bpp, available on the

Wateloo BragZone site ([7]). The results are shown in table

1, where we report the computation time with a Pentium II

400 MHz processor and the compression rate for values of

δ ranging from 4 to 16. Fig 2 shows the original images,

the images compressed with δ = 16 and the associated seg-

mentation obtained in this case.

Even if, for small values of δ, the method cannot com-

pete with other techniques for near lossless compression

(for example with the JPEG-LS standard), the obtained re-

sults are very interesting for the whole range of values of

δ. Many considerations can be made to improve the com-

pression scheme. The objective of the work has however

demonstrated the benefit of addressing second generation

coding with the use of the l∞ norm.

Lena Bird

δ bpp time bpp time

4 3.57 1.72 1.68 1.36

6 2.73 1.54 1.12 1.09

8 2.26 1.48 0.89 0.96

10 1.95 1.35 0.75 0.91

12 1.72 1.29 0.65 0.88

14 1.54 1.23 0.57 0.85

16 1.39 1.19 0.50 0.83

Table 1. Computation time in seconds and bpp obtained in

compressing Lena and Bird for different values of δ.
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Original Image of Lena δ = 16; 1.39 bpp Segmentation for δ = 16

Original Image of Bird δ = 16; 0.5 bpp Segmentation for δ = 16

Fig. 2. Results of simulations in coding the images Lena and Bird.

6. CONCLUSION

In this paper we have presented a simple second generation

image coding technique with l∞ norm error control. The

method is based on segmentation of the image in rectangu-

lar region, in which near optimal bilinear approximations

of the pixel values are used. We have shown how to use

sub-optimal strategies so as to obtain a good compromise

between the rate distortion performance of the coder and

the computational complexity of the method.
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