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Approximations of One-Dimensional Digital
Signals Under the l Norm

Marco Dalai, Student Member, IEEE, and Riccardo Leonardi, Member, IEEE

Abstract—Approximation of digital signals by means of contin-
uous-time functions is often required in many tasks of digital to
analog conversion, signal processing, and coding. In many cases the
approximation is performed based on an 2 optimality criterion;
in this paper we study approximations of one-dimensional signals
under the norm. We first introduce approximations in linear
spaces, for which linear programming methods are known. For the
particular case of linear approximations (i.e., first-order polyno-
mials), we propose a geometric solution that is shown to be compu-
tationally more efficient than the linear programming approach.
Then, we study the problem of piecewise approximations, i.e., di-
viding the domain into intervals and approximating the signal in
linear spaces within every segment independently, so as to reach
an optimal noncontinuous approximation. Given an error bound

, we establish a strategy to determine the minimum number of
segments for which the approximation is guaranteed to produce an
error within . We then show how to find the optimal partition that
gives the piecewise optimal solution with segments. The com-
putational complexity of the algorithms is studied, showing that in
many practical situations, the number of operations is ( ), with

being the number of samples.

Index Terms—Linear programming, -infinity approximations,
minimum path, Viterbi algorithm.

I. INTRODUCTION

APPROXIMATION of discrete signals by means of contin-
uous time functions has been studied extensively in the lit-

erature (see, for example, [1]–[3] and references therein for an
overview). Most of the attention has been dedicated to approx-
imations under the norm, which means that the goodness of
the approximation is established by evaluating the mean square
value of the error. In this paper, we study approximations under
the norm.

Given a discrete set of points , , we consider
a discrete signal as a function that associates a
real valued to each value in . We indicate with
the set of functions bounded over and with the norm
defined, for , by

As usual, the distance between two functions and
is then defined as the norm of the difference function, i.e.,
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. The problem of approximating a
signal under the norm consists of finding a function
from a given set of functions such that the approximation
error, that is, the distance , satisfies some given con-
straint. In some cases we will be interested in finding which
approximates with an error smaller than a given threshold ,
while in other cases we will want to be the function of that
minimizes this error.

In the following sections, we will study some of these par-
ticular problems, analyzing in detail some rather interesting
special cases. This paper is organized as follows. In Section II,
we briefly present the important case of approximations in
linear spaces; we summarize the current approach for finding
the optimal approximation, which reduces to solving a linear
program, and we show how to use this technique for the
solution of a more general approximation problem. For this
section, we refer the reader to [2] for a detailed analysis of the
approximation problem and to [4] for a general study of linear
and nonlinear programming theory, even if it is not necessary
for the understanding of this paper. In Section III, we consider
the particular case of straight line approximations; we propose
an efficient geometric algorithm for finding the optimal solu-
tion, showing the computational advantage of this method over
the currently best performing linear programming technique.
Then, in Section IV, we consider the problem of piecewise
approximations in linear spaces. We show how to partition
a given signal into a minimum number of segments so as to
obtain a piecewise approximation within a given tolerance; we
then show how to optimize the partition so as to minimize the
error with the same number of segments. Finally, in Section V,
we analyze the case of straight line piecewise approximations
presenting a more efficient procedure based on the results of
Section III. For a deeper analysis of computational geometry
and optimization techniques used in Sections III–V, we refer
the reader to [5]–[7, Sec. VI], but still this is not necessary for
the understanding of the proposed methods.

II. LINEAR SPACES AND LINEAR PROGRAMMING

A very important special case of approximation problems is
obtained when the domain contains only a finite number of
points , , and the set is a linear space generated
from a finite set of basis functions. If is a fixed integer,
we take a set of linearly independent
functions ,1 and we consider the set ; this means

1Here the term “linearly independent” will mean that any nontrivial linear
combination of the b functions cannot be null over every point of D.
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that for every , there exists a sequence of coefficients
such that

(1)

This hypothesis implies that every possible approximation to
the signal is uniquely identified by a sequence of real coeffi-
cients that are its representation in the basis. Now, for unifor-
mity with the literature, let us map every function of in the
vector of whose th component is the value , so as to
work in a subspace over instead of the space .

If is the matrix with elements , (1)
is mapped to

Thus, if we want to find the optimal approximation of a
signal in , we have to find the coefficient vector
that minimizes the value

(2)

This problem has been studied extensively in the mathemat-
ical and mathematical programming literature (an exhaustive
overview can be found in [2]; see [8] for a classic result) and
the most recent approach consists in converting it to a linear
program in 1 dimensions. Accordingly, let be the
vector with all its components equal to one; then, for every fixed

, the value in (2) is given by the smallest possible value of ,
say, , that satisfies

where inequalities between vectors are to be intended, here and
in what follows, component by component. Subsequently, min-
imizing (2) is equivalent to minimize as a function of .

If we set and we call the ( 1)th vector
of the canonical base of (i.e., the vector whose ( 1)th
component is equal to one and all other components are zero),
we are minimizing the linear function

under the conditions

This formulation is exactly the enunciate of a linear program-
ming problem in 1 dimensions. Thus, for finding the solu-
tion of the approximation problem, it is possible to take advan-
tage of the most advanced linear programming techniques that

are available in the literature. In our case, however, it is particu-
larly interesting to note that, if the parameter can be consid-
ered fixed and much smaller than , it is possible to solve the
problem in expected operations, as shown in [9] and [10]
(see also [11, ch. 9]). In the following, we will always consider
the parameter to be constant, and we will thus assume that in
linear spaces it is possible to compute the optimal approxi-
mation in linear time (with respect to the number of samples).

It is interesting to note that the idea of approximation can
be extended to a more general approach. Suppose, indeed, that
we are still interested in controlling the approximation error at
every point, as in approximations, but assigning different
weights (or, more precisely, different offsets) to different do-
main coordinates, i.e., approximate with a maximum error that
differs from point to point. Formally, this is expressed by stating
that we want to find a function such that

(3)

where is the allowed error in the point . Interestingly,
this problem can be treated in the same way, by using the addi-
tional variable and minimizing subject to the constraints

(4)

In this case, clearly, we aim at finding a nonpositive value of
, thus verifying if the problem is feasible or not [i.e., a func-

tion satisfying (3) exists]. If a positive value is obtained, we
conclude that the problem is not feasible but having reached the
knowledge of how far we are beyond the tolerance . If, instead,
a negative value of is obtained, we know that the problem
is feasible and we find the approximation that maximizes the
margin from the threshold. In the latter case, however, it is im-
portant to note that the minimum value of cannot be less than

, as the values on the right-hand side of (4) must
be nonnegative. Thus, by calling the point in which reaches
the minimum, in some cases it is possible to fit in while
still satisfying (3) for every other point . In this case, in the
linear program, we have a constraint (given by the point ,
i.e., ) that is orthogonal to the
minimization vector and thus the solution is not unique. In this
situation it could be convenient to project the problem into the
hyperplane , so as to optimize the approx-
imation over while imposing exact interpolation in .
We conclude by clarifying that a program for the classical
approximation can be used for this more general type of approx-
imation. In fact, let be a constant such that . Thus, if
we set and ,
it is easy to see that (3) is equivalent to

Thus, the approximation of with a variable tolerance can
be obtained by approximating and jointly with the usual

norm. This idea has been of practical utility, in the field of
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Fig. 1. Steps of the geometric method for single link optimal solution. (a) Signal samples. (b) Convex hull found. (c) Solution found.

image coding, in [12], where a separable approach has been used
for the problem of finding bidimensional suboptimal bilinear
approximations. We refer the reader to [12] for more details.

III. LINEAR APPROXIMATIONS

In this section, we study the particular case of linear approx-
imations, i.e., by means of first-order polynomials. In this case
the general function of is expressed as ,
where and are real numbers. It is clear that in this case we
can take ; thus the space has dimension 2 and the
problem of finding the best approximation of a given signal
is equivalent to solving a three-dimensional linear program. In
particular, we have to minimize the linear function

under the constraints

...
...

...

...
...

...

...

...

For what has been said at the end of the previous section, very
efficient linear programming techniques are available for this
problem, and the optimal approximation can be found in
expected number of operations. The expectation is due to the
fact that such linear programming techniques are based on ran-
domized methods, and thus the number of operation used for a
fixed signal is a random variable. We propose here a geometry-
based algorithm that can outperform the linear programming
technique by exploiting the particular nature of the problem.
The advantages of this algorithm will be detailed; we only re-
mark here that it is deterministic and uses operations in
the worst case, as we will prove in what follows.

A. The Proposed Geometric Algorithm

Let be the domain of points of , be
the signal, and be the set of points of the signal samples
in the plane, i.e., . Let be the convex hull

of , that is, the smallest convex polygon that contains every
point of . Let us define some notations for clarity. Let be the
number of sides of ; we indicate with , , the
vertices of in counterclockwise order, with the leftmost
one. For convenience, we add a new point ; then
we indicate with , , the side . Let be
the integer such that is the rightmost vertex of ; then we
will call lower hull the polygonal line formed by the sides ,

, and upper hull the polygonal line formed by
the sides , . We will consider that the vertices
and belong to both the upper and lower hull. Finally, given
a side and a point , we will say that is -internal to if the
vertical line through cuts the side ; on the contrary, we will
say that is -external on the left or on the right, the meaning
being obvious.

Now, suppose for a moment, for simplicity of the presenta-
tion, that has no pair of parallel sides. Then, to each side of

it is possible to find a vertex of that is the most distant
one from in the orthogonal direction; we call the opposite
vertex to the side .

Proposition 1: Under the above hypothesis, there exists one
and only one side of such that is -internal to . The
optimal linear approximation of the signal over the domain
is then the line parallel to and equidistant from and .
(For a proof, see Appendix A). We call the extremities and

, , of the side and the opposite vertex
pivot points of the set , so as to identify the three points that
determine the optimal linear approximation.

This proposition gives a very useful property of the geometry
of the polygons. By using this proposition, we can construct a
very efficient geometric algorithm to find the optimal linear
approximation of a signal (see Fig. 1).

Algorithm 1

• Compute the convex hull of the set .
• Scan the sides of the convex hull computing their opposite

vertex until the pivot points , , and are found.
• Compute the solution line .

We now give a detailed explanation of the first two steps
of Algorithm 1 (the third step is only a simple computation),
for which we propose efficient subalgorithms showing that the
number of operations is .

1) Computing the Convex Hull: Finding the convex hull of
a set of points in the plane is one of the most studied problems
of computational geometry, and several algorithms are available
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for this task (see [5] and [13]). One important thing to be consid-
ered here is that the points are sorted with respect to the coordi-
nate. Under this hypothesis, it is possible to find the convex hull
of the set in operation using Graham’s algorithm [14].
Here we recall only that the main idea is to construct the convex
hull by moving from left to right; at every step the polygon is
updated by adding a new point and removing the sides of the
polygon that are visible by the entering point. The only basic
operation that is required for this algorithm is the evaluation of
the order of three generic points , , and in the plane,2 and
it is easy to see that this evaluation is nearly equivalent to the
evaluation of the vector product . (See Fig. 2 for a
graphical explanation. See also [7, Sec. 33.3] for a detailed de-
scription of these operations.)

2) Finding the Vertices , , and : Once we have con-
structed the convex hull of the set , we have to search the
side such that its opposite vertex is -internal to . We now
state some simple lemmas that suggest an efficient way to find
the searched and . These lemmas are proved in the Ap-
pendix, where they are also used for the proof of Proposition 1.

Lemma 1: Every side of the lower hull has its opposite vertex
in the upper hull and vice versa.3

Lemma 2: If we move from one side of the polygon to its
consecutive in counterclockwise (CCW) direction, the respec-
tive opposite vertex, if it changes, moves in CCW direction too.

Lemma 3: A vertex , , is the opposite vertex of
a side , i.e., , if it is more distant from than the
vertices and .

These considerations lead to a good algorithm for finding the
opposite vertex of each side of the lower hull, and thus also the
searched and . As a general notation, we call the integer
such that .

Algorithm 2

• Find the opposite vertex of : starting from scan in
CCW direction the vertices of the upper hull, computing
their distances from until we find a vertex which
is less distant from than . Thus .

• Continue by considering the sides of the lower hull to
find their opposite vertices. For each side we have to
control the vertices of the upper hull from (in
CCW direction) until we find a vertex that is less
distant from than . Then .

• Do the same, symmetrically, for the upper hull sides.

Proposition 2: Algorithm 2 requires at most vector
product computations4 of the type for finding
the opposite vertices of all convex-hull sides.

Proof: Consider for a moment only the number of distance
computations required for finding the opposite vertices of the

2The order of three points q q and q is defined to take value: 0 if the three
points are aligned, 1 if the oriented polygonal q ! q ! q turns counter-
clockwise and �1 if it turns clockwise.

3Remember that p and p belong to both the upper and lower hull.
4Recall that k is the number of sides of the convex hull.

Fig. 2. Example of construction of the convex hull with Graham’s method. The
point q has to be inserted after q since��!q q ���!q q > 0while��!q q ���!q q <

0. Symmetrically, q has to be inserted before q since��!q q ���!q q > 0 while
��!q q � ��!q q < 0.

lower hull sides. Consider the generic side and suppose we
have found the opposite vertex of the previous side ,
i.e., . It is easy to see that for finding the op-
posite vertex of , one must compute dis-
tances. For example, suppose and ; if

, in order to find one has to compute the dis-
tances of , , , and from , and thus
distances. For the first side , the same argument holds setting

as in this case, we start to check the vertices starting
from . This means that the total number of computed dis-
tances is .
But clearly and thus the opposite vertices of the
sides of the lower hull are found by computing at most 1
distances. Considering the symmetry of the problem, we can say
that the opposite vertices of the upper hull sides can be found by
computing at most 2 1 distances, for a total of at most
3 distance evaluations. It is clear, however, that the algorithm
will stop, for the problem of interest, when the side with oppo-
site -internal vertex has been found. Finally, we now show that
in fact one does not need to compute 3 distances but only 3
vector products of the type , which represent a
smaller computational cost. In fact, when searching the opposite
vertex of the generic side , we do not need to really know the
distances of the generic point from , but only compare the
values for different . Considering that the distances of from

(for varying but fixed ) are proportional to the areas of the
triangles of vertices , , and , we can compare the value
of these areas instead of the distances. Since twice the area of
the triangle of vertices , , and equals the vector product

, this implies that the algorithm requires only
3 such vector products.

Going back to Algorithm 1, it can be stated that this algo-
rithm requires operations and that the only required basic
function is the evaluation of vector products. Whereas from a
theoretical point of view Algorithm 2 is quite useful, it can be
further improved by using the following property of a convex
hull .

Lemma 4: Given two consecutive sides and , their
common vertex is the opposite vertex of every side be-
tween and (in the path not containing and ,
obviously). With such a consideration, Algorithm 2 can be mod-
ified as follows.
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Fig. 3. Comparing the number of operations used by the geometric method and Seidel’s randomized algorithm for linear programming in small dimensions.
(a) Signal used for approximations. The near-linear behavior has been obtained by summing small sinusoidal functions and white Gaussian noise to a straight line.
(b) Number of operations used by the two algorithms.

Algorithm 3

• Find , opposite vertex of , as suggested in
Algorithm 2.

• For , once is found, check
a) if is -external to on the right go on searching

;
b) else if is -internal to terminate the search;
c) else if is -external to on the left, search the

side of the upper hull between and such
that the common vertex of and , i.e., , is

-internal to it.

It is important to note that this algorithm is strongly based on
the proof of Proposition 1; this ensures that one of the items b)
or c) is reached before finishing scanning the sides of the lower
hull and thus the algorithm always finds the solution. With this
algorithm the number of computed vector products is reduced
by about a factor of two in the mean case with respect to the
performance of Algorithm 2.

B. Performance Comparison

Compared to the linear programming solution, the geometric
algorithm has many advantages. The first one is that it is very
easy to implement and generates a very compact code. As it
has been shown, all the computations in the construction of the
convex hull and the scanning of its side-vertices pair can be re-
duced to a vector product operation; thus, the implementation
requires a few loops calling a simple function for the compu-
tation of a vector product. Furthermore, as the vectors are al-
ways coplanar, this operation is only a sum of products of the
type , which can be executed very efficiently on
many digital signal processors. Moreover, the memory usage
is very limited; the only memory space needed (apart from the
input sequence) is a vector containing the indexes of the points
that are vertices of the convex hull , which represent at most

integers. Furthermore, it is important to note that, if we are

working with discrete signals, almost all the computations can
be performed using only fixed-point arithmetic. The only need
for floating-point operations is indeed due to the construction
of the optimal line from the pivot points and the evaluation of
the approximation error, which represent a fixed number of op-
erations. This is a concern in case a floating-point unit is not
available.

Finally, an important consideration is about the computation
time. First of all, from a theoretical point of view, our algorithm
has a computation time that is in the worst case, while
the linear programming techniques can only provide a solution
in on average. For practical considerations, then, we have
compared our algorithm with an ad hoc implementation of the
Seidel randomized algorithm for linear programming in small
dimensions [9], which is known to be very fast for this kind
of problems. For this purpose we have counted the number of
operations used by the two algorithms, so as to remove any de-
pendency on the machine architecture, type of data (we recall
that our algorithm can work without using floating point arith-
metics) and, most important, memory usage.5 We have taken
a signal with near-linear behavior, shown in Fig. 3(a), and we
have computed the linear approximation of the first points,
with varying from 4 to 500. The number of operations used
by the two methods, as a function of , is plotted in Fig. 3(b).
As it can be seen, the Seidel algorithm presents an irregular be-
havior, due to its randomized nature, having linear complexity
in the mean. The geometric method, instead, gives a regular in-
crease of the number of operations, which leads to a speedup
by a factor ranging from 3 to more than 15 with respect to the
Seidel algorithm, with a mean gain of about 8.

IV. PIECEWISE APPROXIMATIONS WITH ERROR BOUND

Often signal approximation in linear spaces is not a practical
tool for signal processing and coding due to the fact that the

5It is also relevant to notice that, for a fast implementation of the Seidel algo-
rithm, one should not make use of dynamic memory allocation; this implies the
necessity of allocating more than 30n floating-point variables, against the n in-
tegers of the geometric algorithm. If instead one wants to reduce memory usage
(in any case much more than n integers), memory should be allocated dynami-
cally, thus leading to a significant reduction of the computational efficiency.
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Fig. 4. Example of piecewise approximation of a 16-sample signal with asso-
ciated partition points. Here �(g) = 3, p = 0:5, p = 4:5, p = 10:5, and
p = 16:5.

dimension of the approximation space must increase with the
number of samples if we want to keep small values of the error.
Thus, it is necessary to divide the domain in smaller subdomains
(intervals) such that the signal can be approximated with small
error in a small dimensional space within every domain. With
this idea, we define a more general function space: given a set of
functions (and the induced ) we call the set of functions

over for which there exists a partition of in subdomains
such that the restriction of to every is in .

In this section and in the next, we study the problem of
optimizing the partition of the domain into connected subdo-
mains while approximating the signal within an error threshold.
Consider that, given a partition of the domain, the problem of
approximating the signal within each subdomain is only an
application of what has been described in Section II. So, in the
following, the emphasis will be addressing mainly the partition
of the domains. For the sake of clarity, we suppose that the set

is characterized by , , even though the
presented results hold in the case of nonuniform samples. Given
any piecewise approximation of the signal, we characterize
it with an error , a number of connected subdomains ,
and a partition set of values such
that if is the last point of the th interval and

1 is the first point of the ( 1)st interval. Moreover, we
set and , and it is implicitly
considered that the partition points can only take values of
the type 1/2 with . See Fig. 4 for an example of
piecewise approximation with the associated partition points.
All considered intervals6 are measured on a discrete half integer
value. Thus we will identify the “approximation on the interval
[3/2,7/2]” as “the one of locations 2 and 3”; similarly, by stating
“the partition point is in ]3/2,7/2]” is equivalent to saying
“ .”

We now study the problem of optimally partitioning the do-
main by introducing the idea of minimal and optimal approxi-
mations for a given error threshold .

A. Minimal Solution

The problem to be solved is the following: given the set of
samples of signal , the set of the basis functions, and an

error bound , we want to find an approximation of
with error such that the number of intervals is the
smallest possible.

6We use bracket notation for intervals. So, [a; b] is the interval containing
both a and b, while ]a; b[ contains none, [a; b[ contains a but not b, and ]a; b]
contains b but not a.

In general there are more solutions to this problem, and we
aim at finding at least one of them. Interestingly enough, it is
possible to find two solutions (not necessarily distinct) with a
very simple algorithm by scanning the signal in a progressive
fashion.

For finding these solutions, we first need an algorithm that
finds, given any point , the “longest” possible
approximation of starting from it in one direction, e.g., the
maximum value such that the points ,

can be approximated in with error smaller than
the threshold . This leads to an approximation of the points
which is consistent with the error constraint . The algorithm is
the following.

Algorithm 4

• Compute the optimal approximations over the intervals
until an error

larger than is obtained (which happens for );
call .

• Find with a binary search on the interval .

Proposition 3: Algorithm 4 requires an expected number of
operations.

Proof: Consider the first step of the algorithm; the op-
timal approximation over the generic interval 2 can
be found in 2 expected operations using Seidel random-
ized algorithm, as explained in Section II. Thus, is found in

operations. Then, the second step of
the algorithm computes at most approximations of length less
than or equal to 2 . So, the expected number of operations for
the second step is , which is the dominating
term.

We now apply the proposed algorithm for the construction of
two approximations that we will prove to be minimal. We indi-
cate these approximations with and so as to emphasize the
fact that they are obtained by scanning the signal, respectively,
from left to right and vice versa. Here we give the algorithm for
finding .

Algorithm 5

• Start by scanning the signal from the first point . Using
Algorithm 4, find the first longest possible approximation
segment, and thus the partition point . Set to 1.

• Given , compute the longest possible approximation
segment (using Algorithm 4) starting from , and
thus find . Repeat until the end of the signal is
reached.

Proposition 4: Algorithm 5 requires an expected number of
operations.

Proof: Note that, setting , from
Proposition 3, we need operation for finding

. Thus, we need operations; considering
that , we have

.
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Fig. 5. Finding the optimal partition set. (a) Example of partitions of a domain. (b) Trellis equivalent to the partition example.

Clearly, the same procedure of Algorithm 5 can be used ana-
lyzing the signal from right to left to obtain the approximation
that we denote with . It is also clear that both and de-
pend on ; we now show that they are indeed minimal for that
given value of .

Proposition 5: The two approximations and lead to
the same number of segments , and every
approximation such that satisfies .

Proof: Consider the construction of . The way
was obtained implicitly says that it is not possible to ap-
proximate the interval [1, 1] with a single segment
(without exceeding the value of ); cannot be an exception
and thus must have a partition point in the interval

. Similarly it is not possible to approximate with a
single segment the interval , so that
must have at least another point in as

. By iterating the argument, this proves by
induction that for there must exist a point of

in the interval and thus . In
particular, setting , we obtain that ; but,
by symmetry of the construction process, in the same way we
could prove that and thus, setting now ,

. This means that and that this
number of intervals is minimal.

B. Optimal Solution

In the preceding section, we have seen how to find a piece-
wise approximation that uses the minimum number of intervals
in operations. More specifically, we have seen that it
is possible to find two solutions and , each being minimal.
Now, given that the number of used intervals cannot be further

lowered, we can ask for the minimal approximation that mini-
mizes the approximation error. For this task, we now show that
the and solutions provide two partition sets that are a sort
of extremes of the possible partition sets of any minimal approx-
imation. More precisely, we have the following.

Proposition 6: If satisfies and , then,
for every , we have .

Proof: If , we have already proved (in the
proof of Proposition 5) that there exists a point of in

for . If , then in each
interval there is exactly one point, which has to be . This
holds for so that . By
symmetry, we can say that if and , there is
exactly one point in for
and, for , we obtain .
By combining these inequalities we reach the result that if
is a -link solution, then for every

.
From now on we will call the

number of possible values that can take, using the notation
, . Furthermore, we follow the

notation of the previous section and set ;
thus for every value of (see Fig. 6).

The above consideration provides a very important property
of the possible partitions of the domain to obtain a minimal so-
lution because it reduces enormously the number of possible
choices of the partition points and gives then the possibility of
efficiently finding the optimal solution. We show, in fact, that it
is possible to reduce the problem of finding the optimal approx-
imation to the problem of finding a minimum path in a graph.
(See [7, Sec. VI] for a presentation of general graph algorithms.
Also note later that our graph problem is not a minimum-path
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Fig. 6. Computational complexity of the evaluation the link weights
"(p ; p ). For every fixed p , we can find the optimal p with a binary
search, thus computing log (w ) approximation. The number of points used
in every approximation is at most w + l ; clearly, for every i, we have
w � l and thus the number of expected operation in finding the optimal p
for every fixed p is less than or equal to (l + l ) log l . When all the
p points are checked, the number of expected operation is then at most
(l + l )l log l .

problem in the classic sense, as the metric is usually additive
in such problems, but this has no practical implication.) Note
that every piecewise approximation can be considered as a path
between the first point and the last one, passing through some
nodes that are represented by the partition points. Every interval
is then represented as a link between two nodes, and we can as-
sociate to every link a cost given by the approximation error
over the corresponding interval. Considering that every minimal
approximation has exactly one partition point in every interval

, we can represent the whole set of these ap-
proximations with a trellis graph of the type shown in Fig. 5(b),
in which nodes on the same column represent possible positions
of one single partition point. In this graph we have to search the
path that goes from the first point to the last one minimizing the
greatest value encountered on its links. It is not difficult to note
that this problem can be solved with a variant of the well-known
Viterbi algorithm [15]; the only difference is that, while the
Viterbi algorithm is based on an additive metric, here we have
to use the maximum metric. This means that the cost of a path
in the trellis is not given by the sum of the costs of the single
links, but by the maximum of their values. The idea is to find
the optimum path proceeding from left to right. We label every
node with an accumulated state metric , which repre-
sents the cost of the optimal path from the point to it, and we
establish its antecedent , which is the optimal choice of the
point for reaching . In order to be more precise, calling

the cost of the link connecting to , we give
the detailed algorithm for finding the optimal path in the graph.

Algorithm 6

• Define, for the accumulated state metrics
of the points as and the antecedent
points as .

• Given the accumulated state metrics of the points ,
, define, for , the value

as

(5)

and , where is the value of
that gives the minimum in (5). Iterate this point until

is reached.

Consider the behavior of this algorithm. In the first step the
accumulated metrics for the points are set. Then, for every
possible choice of , we select the point such that the
value is the smallest possible. So, for
every , we keep only one point and consequently one path
that is the optimal choice for reaching . Then we define the
new accumulated metric and
repeat iteratively the process, finding the optimal value of
for every possible choice of and so on. At the end, we will
reach establishing the optimal choice of and then, by
backpropagation, the optimal path from to .

Now we want to study the computational complexity of this
procedure; for this purpose consider that the most expensive op-
erations are due not to the Viterbi algorithm but to the evalua-
tions of the link costs . Thus, we should reduce as
much as possible these evaluations, and this can be done by con-
sidering some particular relationships between the costs of the
links entering or leaving the same node. In other words, the min-
imization in (5) can be performed by considering only a subset
of the as candidates for being .

Proposition 7: For a fixed , in (5) (and thus
) can be found with a binary search on , evaluating

only link costs .
Proof: First consider that if

and this implies by induction (as it is obvious) that
if . Furthermore, if , we clearly

have , . This means
that, for every fixed , when ranges from one to , the
values are nondecreasing and the values are
nonincreasing. Thus, suppose that for a given value of , say,

, we have ; then, in this point, clearly
and, in order to lower this

value so as to find the minimum in (5), we must move from
on the left. On the contrary, if for a value of , say, , we

have , then we must move on from on
the right, so as to decrease the value of . The above
argument implies that it is possible to search the optimum
with a binary search; we check first the point , then
or , depending on whether
or not, and so on, dividing by a factor of two the possible po-
sitions of at every step, and thus finding the minimum in

steps. Note that if a value of is found such that
, then this is optimal.

We now give an upper bound on the number of operations
needed for the execution of Algorithm 6.

Proposition 8: Algorithm 6 needs at most an expected
number of operations, with being the total
number of samples.

Proof: We refer to Fig. 6 as a support for the compu-
tational complexity analysis. In the whole proof, we make
use of the fact that for every , we have . We first
consider the computations of the values and ,
and then consider all other partition points. For finding the
accumulated state metrics of the points , we have to compute

, and thus approxima-
tions, each one of length less than or equal to . So, the total
number of expected operations needed for the points is at
most . For finding , instead, from
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Fig. 7. Example of an optimal l signal approximation by means of mixed piecewise linear and cosinusoidal expansions. Given the dotted signal shown in (a),
we have computed the optimal approximation obtained choosing a value of � in the interval [14,52]. As we can see in (b), the number of operations increases with
�. In particular, it is interesting to see the increase in the value of the number of multiplications for some specific values of �. For example, when � reaches values
near 47, we can see that the number of multiplications notably increases. This is due to the fact that when � changes from 46.7 to 46.8, the point p ( �g ) goes from
100.5 to 94.5, thus with a consequent increase in the value of w and then in the dimension of the trellis. (a) Signal approximation with � 2 [14; 52]. (b) Number
of executed operations when approximating the signal with respect to the value of � 2 [14;52].

Proposition 7, we have to compute approxima-
tions, each one of length less than or equal to .
So, for , the expected number of operations is at most

.
For every remaining point7 , , we have to compute

approximations of length less than or equal to
, and the expected number of operations is bounded

by . Thus the total number of
expected operations is at most

(6)
and, considered that for all (and thus that we can bound
the logarithms with ), we have at most

(7)

operations. Now, as , this quantity is at most
.

It is possible to show that this bound cannot be further low-
ered because we can construct an example of partition for which
the algorithm has complexity of exactly expected
operations. Nevertheless, this estimation can be very pessimistic
in most practical situations. In many applications, in fact, we
can suppose that the maximum length of the approxi-
mation intervals is asymptotically bounded8 with respect to the
number of points . In this case we have the following.

7i.e., for evaluating the values e(p ), j = 1; . . . ; w ; for a fixed 1 < i < k.
8This assumption is completely natural when the variation of the number of

samplesn is due to the time windowing of a given signal. Consider, for example,
an audio signal: unless we are talking of silence, it makes sense to suppose that
the maximum interval length does not depend on the number of samples we are
studying (if we are using a predefined constant sampling frequency).

Proposition 9: If is bounded with respect to the
number of points , then Algorithm 6 needs an expected
number of operations.

Proof: Suppose , , independently of the value of
. Then (6) can be bounded by

(8)
where . But, clearly, satisfies ,
and the complexity is thus .

Now that we have estimated the complexity of the method
with respect to the number of points, it is important to clarify
that the execution time is very much influenced by the selected
error threshold. Even if at first glance this seems counterintu-
itive, we have to consider that the dimension of the obtained
trellis depends on the error bound . Suppose, in fact, that the
signal is such that it can be approximated with a number of
intervals if and only if the error threshold is in the interval

. Then, clearly, the obtained optimal solution has an error
equal to and does not depend on if it is in the considered in-
terval. On the contrary, the two minimal approximations and

depend on ; and, in particular, the larger the value of , the
more different their partition sets . As a consequence, the con-
structed trellis varies from a trivial one for the value to a
maximum dimension when approaches . This fact is better
shown with an example; in Fig. 7(a), we can see the optimal ap-
proximation (solid line) obtained when approximating the given
signal (dotted) with an error threshold in the interval [14,52],
using as basis functions9 .
As we can see from Table I, this interval of values for leads
to an optimal approximation that uses three intervals, (and has

9Note that it is often computationally useful, in practice, to use shift-invariant
basis.
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TABLE I
MINIMUM NUMBER OF INTERVALS AND OPTIMAL ERROR VALUE OBTAINED

FOR VARIOUS ERROR THRESHOLD � WHEN APPROXIMATING

THE SIGNAL DOTTED IN FIG. 7(a)

a maximum error of 13.91). In Fig. 7(b), we can see how the
number of operations used by the algorithm increases signifi-
cantly with , as explained.

C. Perspectives for Representation of Signals by Irregular
Samples

In the first section of this paper, we have recalled that every
(1-link) signal approximation problem in an -dimensional

linear space can be reduced to a linear program. Thus, it is not
difficult to show that the solution of the problem leads to the
identification of a (not necessarily unique) set of 1 samples
(which are in fact what we called pivot points in the straight line
approximation case) that uniquely specify the optimal approxi-
mation. This means that there exists a set of 1 samples (out
of the, say, ) such that the optimal approximation is only due
to them, and removing all the other 1 samples does not
change the optimality of this approximation. Thus, approx-
imation can be seen as a tool for irregular signal subsampling,
in the sense that it automatically gives a subset of samples that
bring the behavior of the whole signal (with a confidence related
to the and values). In the case of piecewise approximations,
moreover, the study we have performed leads to the determina-
tion of a minimal number of points and a domain partition that
optimally describe the whole signal. In Fig. 8, we show an ex-
ample of the result of this subsampling procedure when applied
to the electrocardiogram signal of Fig. 10 in the next section. It
is clear, however, that the reconstruction of the approximation
beyond the pivot points by using only these samples can be per-
formed if the partition is known.

V. PIECEWISE LINEAR APPROXIMATIONS

In the preceding section, we have described an algorithm for
finding the optimal piecewise approximation when working in
general piecewise linear spaces ; in that case we considered
that the approximation over every interval could be obtained by
using the linear programming approach and thus with average
time proportional to the number of samples. It is clear that if we
are interested in piecewise linear approximations, the geometric
method exposed in Section III-A must be preferred, as it gives
much better performance.

Anyway, we show here that with a slight different version of
the method exposed in Section III-A, it is possible to improve
the construction algorithms for the minimal and optimal solu-
tions. We have in fact the following result.

Proposition 10: Given sample of a signal and an ,
it is possible to find the optimal straight line approximations of
the sets of points with in at most
operations.

Fig. 8. Example of signal subsampling by means of l piecewise approxima-
tions. The circles represent the pivot points of the optimal segmentation subdo-
mains. Here we have used the same electrocardiogram signal of Fig. 10, with
the optimal approximation of Fig. 10(d).

Proof: The proof is constructive, in the sense that we show
how to find the approximations of the sets , , in

. Considering the approximation of with the geometrical
method of Section III-A, we note that the convex hull is con-
structed in a progressive way, i.e., by adding points from left to
right and updating the polygon at every step. This means that be-
fore finding the convex hull of we have found the convex hull
of every with . Now, it is possible to see that the pivot
points of can be obtained from those of in a number of
operations such that .

Consider the convex hull with pivot vertices ,
and and, for a generic point of a convex hull ,

let be the index such that . Consider now the
new entering point (see Fig. 9 for a graphical representation).
We can distinguish three cases.

1) In the first case lies in the strip of plane delimited by the
lines passing through the pivot vertices of . In this
case the pivot points do not change and thus .

2) In the second case is outside the strip from the side
determined by . In this case is the pivot ,
is the consecutive of in , and has to be searched
to the right of in operations.

3) In the third case is outside the strip from the side deter-
mined by and . In this case is still the pivot

, is the vertex that precedes in , and has to
be searched at the right of in
operations.

Considering that , we can see that the worst
case is the third. Thus, in the worst case we need a number of
operations that is and, using the tele-
scopic property, this is operations.

As we have said, this fact is very useful in the study of piece-
wise linear approximations. In particular, we have the following
result.

Proposition 11: For the case of piecewise linear approxima-
tions, Algorithms 5 and 6 require at most and ex-
pected operations, respectively.
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Fig. 9. Finding the pivot points A , B , and C of Q after the insertion of the new point s . We can distinguish three cases, every one being solvable with a
number of operations that is at most O(x(C ) � x(C )). (a) Case 1, (b) case 2, and (c) case 3.

Fig. 10. Example of approximation of an electrocardiogram signal by means of piecewise straight line approximations. (a) Original signal, (b) left-to-right ap-
proximation (�!g ), (c) right-to-left approximation ( �g ), and (d) optimal approximation (f).

Proof: The result is essentially a consequence of the fact
that, from Proposition 10, it is possible to avoid in Algorithms
5 (or better in Algorithm 4 used in Algorithm 5) and 6 the bi-

nary searches. In details, consider the construction of (the
same holds for ). Using the progressive approximation con-
struction explained above, we can scan the signal by adding a



3122 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 8, AUGUST 2006

TABLE II
PARTITION POINTS, ERRORS, AND NUMBER OF MULTIPLICATIONS FOR THE APPROXIMATIONS �!g ,  �g , and f ,

WHEN SETTING � = 2000 IN THE APPROXIMATION OF THE SIGNAL PLOTTED IN FIG. 10(a)

point at every step, starting a new interval every time the error
exceeds the given threshold . This way the number of opera-
tions for every interval is and thus the
total number of operations is .

In the same way, consider the evaluation of the generic
in the second step of Algorithm 6 (and refer to Fig. 6

for a graphical support). Instead of searching the minimum
of over with a binary search (thus
computing approximations), we can find all the values

, , in operations. In fact,
we can first compute the approximation on and then
add the points on the left one by one,
updating the convex hull and the optimal solution as explained
above, for a total number of operations of . This
leads to a gain of a factor for every and thus to a
gain of in the complexity of the complete algorithm.

As an example of approximations by means of piecewise
straight line functions, we show in Fig. 10 the results when
applying the algorithm to an electrocardiogram signal. The
signal samples are 16-bit signed integers (values from 32768
to 32767) and we have set an error threshold . The
algorithm has found a minimum necessary number of ten
segments; in Table II we can see the values of the partition
points for the minimal approximations and and for the
optimal one , together with the relative approximation errors
and the associated computational complexity. Fig. 10 provides
the original signal and its approximations.

VI. CONCLUSION

In this paper, we have presented new strategies for the ap-
proximation of signals in the norm. We have shown a very
efficient algorithm for finding the straight line approximation of
a signal of samples in operation, leading to computa-
tion time that is up to eight times smaller than using the current
linear programming techniques, and with very small memory
usage. The extension of the theory of straight line approxima-
tion to higher dimensions (e.g., plane approximation for two-di-
mensional signals) has been so far experimentally validated with
the use of the convex hull and the definition of pivot points. The
theoretical formulations are still a matter of current research.

We have then studied the problem of piecewise signal ap-
proximations in linear spaces. Given an error threshold , we
have shown how to find an approximation that uses a minimum
number of intervals in operations in the worst case,
which reduces to for most practical situations. Further-
more, we have shown that for this minimum number of inter-
vals, the optimal approximation can be found by using an
norm-based Viterbi algorithm in operations in the
worst case, which still reduces to be in typical cases.

Finally, for the particular case of piecewise straight line ap-
proximations, we have shown that the worst case complexity

of the two algorithms cited above can be reduced to and
, respectively, by using the geometric approach. The ben-

efit of using the norm has been finally discussed for the sake
of discrete signal representation.

APPENDIX I

In this section, we prove the statements given in Section III-A
on the geometrical properties of the convex hull of a set
of points . For better readability, we restate Lemmas 1–4 of
Section III-A2, as they are also necessary for the proof of Propo-
sition 1. We recall the used nomenclature. Given a set
of points in the plane, we call its convex hull. If is the
number of sides of , we call , , the vertices of
in counterclockwise order, with the left-most one. For clarity,
we add a point and set , , as the integer such
that is the rightmost vertex. For , we call the
side and the opposite vertex to the side , i.e., the
most distant vertex of from in the direction orthogonal to
(distances between vertices and sides will always be considered
in this sense in what follow). We say that is -internal to

if the vertical line through cuts .
Lemma 1: Every side of the lower hull has opposite vertex in

the upper hull and vice versa.
Proof: This fact is somehow obvious. Anyway, consider a

side of the lower hull, and suppose is more distant from
than . This situation is shown in Fig. 11(a), where is the line
parallel to line to which belongs. By the definition of ,
must lie at the left of and, by the definition of opposite vertex,

must lie above line . Thus, it is easy to see that must
lie in the portion of the plane indicated with . Any point ,

, of the lower hull must instead lie in the area. Thus
the point belongs to the upper hull.10 If is more distant
from than , we obtain the equivalent symmetric situation
shown in Fig. 11(b), which leads to the same conclusion. For the
upper hull sides, we can operate symmetrically with a vertical
flip and thus prove the converse.

Lemma 2: If we move from one side of the polygon to its
consecutive in CCW direction, the respective opposite vertex, if
it changes, moves in CCW direction too.

Proof: We consider the generic sides and with their
opposite vertices as shown in Fig. 12; lines and are parallel
to and , respectively. It is clear that cannot be
farther than from and must be at least as distant as
from . Thus must lie in the shaded portion of plane
between and , and thus it is positioned in CCW direction with
respect to . Note that this does not mean that is the
consecutive vertex of (see Lemma 4).

10Again remember that we consider p and p to pertain to both upper and
lower hull.
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Fig. 11. Possible region for the opposite vertex of a lower hull side.

Fig. 12. Relation between the opposite vertices of two consecutive sides.

Fig. 13. The opposite vertex can be recognized considering only its neighbors.

Lemma 3: A vertex , , is the opposite vertex of a
side , i.e., , if it is more distant from than vertices

and .
Proof: This follows directly by the convexity of the convex

hull. Consider Fig. 13. If is more distant than and
from , and if there were a vertex more distant than , then
the segment would not be inside the convex hull, which is
absurd.

Fig. 14. Reciprocity property between sides and opposite vertices.

Lemma 4: Given two consecutive sides and , their
common vertex is the opposite vertex of every side be-
tween and (in the path not containing and ,
obviously).

Proof: Consider Fig. 14, where the position of the opposite
vertices is justified and imposed by Lemma 2. Lines and are
parallel to and , respectively. From the fact that and

are opposite vertices of and and from the con-
vexity of the convex hull, we can see that every side between

and has a slope that is “intermediate” between
the slopes of and . So, the generic side between and

has a slope that is intermediate between those of and
; this means that its parallel through leaves and
in the same halfplane and thus is more distant than

and from . From Lemma 3, this implies that is the
opposite vertex of .

A. Proof of Proposition 1

We start by demonstrating that there exists at least one side
whose opposite vertex is -internal to it. Suppose that every
side has its opposite vertex which is not -internal; then,
clearly, must be on the right of and must be on
the left of . So, there must exist an integer such that
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is on the right of and is on the left of . Then,
from Lemma 4, is the opposite vertex to every side between

and ; the vertical line through must cut one of
these sides, and so there exists a side whose opposite vertex
is -internal to it, so that the initial hypothesis was inconsistent.

Now, suppose we have three points , , and of such
that is the -internal opposite vertex to the side . For these
three points, the optimal linear approximation is easily proved
to be the line parallel to and equidistant from and .
The error produced by this line in approximating at every
coordinate is proportional to the distance of the point

from the line; the way has been selected11 ensures
that , , and are the points of most distant from and so,
the approximation error of is due to , , and . But for
these three points is optimal, and so it is for the whole set ,
as , , and are peculiar vertices of the convex hull.

Finally, we show that there cannot exist another triplet of
points , , and such that is -internal to the side .
Supposing these three points exist, they should lead to an op-
timal solution . Calling the error produced by
the line over the points , , and , we should have

(9)

since reaches its maximum error on , , and , and is
optimum for , , and . But symmetrically we have

(10)

So the only possibility is that all these must be replaced by
and, consequently, , which means that is parallel to

, contrarily to the initial hypothesis that has no parallel
sides. This argument also proves that if has parallel sides,12

the optimal solution is still unique, even if this is not true for the
pivot points.
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