
Sphere Packing Bound for Quantum Channels
Marco Dalai

Department of Information Engineering
University of Brescia, Italy

Email: marco.dalai@ing.unibs.it

Abstract—In this paper, the Sphere-Packing-Bound of Fano,
Shannon, Gallager and Berlekamp is extended to general
classical-quantum channels. The obtained upper bound for the
reliability function, for the case of pure-state channels, coincides
at high rates with a lower bound derived by Burnashev and
Holevo [1]. Thus, for pure state channels, the reliability function
at high rates is now exactly determined. For the general case, the
obtained upper bound expression at high rates was conjectured
to represent also a lower bound to the reliability function, but a
complete proof has not been obtained yet.

I. INTRODUCTION

This paper considers the problem of classical commu-
nication over quantum channels, focusing on the study of
error exponents for optimal codes at rates below the channel
capacity. Upper bounds to the probability of error of optimal
codes for pure-state channels were obtained by Burnashev and
Holevo [1] that are the equivalent of the so-called random
coding bound obtained by Fano [2] and Gallager [3] and of
the expurgated bound of Gallager [3] for classical channels.
The expurgated bound was then extended to general quantum
channels by Holevo [4]. The formal extension of the random
coding bound expression to mixed states is conjectured to
represent an upper bound for the general case but no proof
has been obtained yet (see [1], [4]).

In this paper, a sphere packing bound for classical-quantum
channels is derived. The quantum case is related to the
classical one by means of the Nussbaum-Szkoła mapping,
introduced in [5] and central to the proof of the converse part
of the quantum Chernoff bound (see [6] for more details). This
allows us to extend to the quantum case the Shannon-Gallager-
Berlekamp generalization of the Chernoff bound introduced
in [7] (in its converse part). Then, the proof of the sphere
packing bound used in [7] is adapted to the quantum case. This
demonstrates the power of the method developed in [7]. Due to
space limitation, this paper only includes the main derivation
of the results; technical details and additional comments can
be found in an extended version of this paper [8].

II. BINARY HYPOTHESIS TESTING

In this section, the converse part of the Shannon-Gallager-
Berlekamp bound for classical binary hypothesis testing [7,
Th. 5] is extended to the case of quantum state discrimination.
This result will then be used in the next section to derive the
sphere packing bound.

Let % and ς be two density operators in a Hilbert space H
and consider the problem of binary hypothesis testing between
% and ς . We suppose here that the two density operators have

non-disjoint supports, for otherwise the problem is trivial. The
decision has to be taken based on the result of a measurement
that can be identified with a pair of positive operators {1 −
Π,Π}, where 0 < Π < 1, associated respectively to % and ς .
The probability of error given that the system is in state % or
ς is respectively

Pe|% = Tr Π% and Pe|ς = Tr(1−Π)ς. (1)

Remark 1: This choice of notation is motivated by the fact
that our states % and ς do not play the role of the states that are
usually indicated with ρ and σ in the literature. For example,
when comparing Theorem 1 below with the results in [6],
we should interpret our quantities with the correspondences
% = ρ⊗N and ς = σ⊗N in mind. Here, however, we will
apply the theorem to more general cases where % and ς are
tensor products of N not necessarily identical states and, in
this sense, Theorem 1 is more general than the results in [6].

Following [7, Sec. 3], for any real s in the interval 0 < s <
1, define the quantity

µ(s) = log Tr %1−sςs (2)

and let then by definition

µ(0) = lim
s→0

µ(s) and µ(1) = lim
s→1

µ(s). (3)

Theorem 1 (Quantum Shannon-Gallager-Berlekamp Bound):
Let %, ς be density operators with non-disjoint supports, let
Π be a measurement operator for the binary hypothesis test
between % and ς , let the probabilities of error Pe|%, Pe|ς be
defined as in (1) and µ(s) be defined as in (2)-(3). Then, for
any 0 < s < 1, either

Pe|% >
1
8

exp
[
µ(s)− sµ′(s)− s

√
2µ′′(s)

]
(4)

or

Pe|ς >
1
8

exp
[
µ(s) + (1− s)µ′(s)− (1− s)

√
2µ′′(s)

]
.

(5)
Proof: This theorem is essentially the combination of the

main idea introduced in [5] for proving the converse part of
the quantum Chernoff bound and of [7, Th. 5], the classical
version of this same theorem. Since some intermediate steps
of those proofs are needed, we unroll the details here for the
reader’s convenience.

We proceed as in [6]. Let the spectral decomposition of %
and ς be respectively

% =
∑
i

αi|xi〉〈xi| and ς =
∑
j

βj |yj〉〈yj |. (6)



where {|xi〉} and {|yj〉} are orthonormal bases. First observe
that, from the Quantum Neyman-Pearson Lemma ([9], [10]),
it suffices to consider orthogonal projectors Π. So, one has
Π = Π2 = Π1Π =

∑
j Π|yj〉〈yj |Π. Symmetrically, we have

that (1−Π) =
∑
i(1−Π)|xi〉〈xi|(1−Π). Hence, one has

Pe|% = Tr Π% (7)

=
∑
i,j

αi|〈xi|Π|yj〉|2 (8)

Pe|ς = Tr(1−Π)ς (9)

=
∑
i,j

βj |〈xi|1−Π|yj〉|2 (10)

Using the fact that |a|2 + |b|2 ≥ |a + b|2/2 for any two
complex numbers a, b, we find that for all (i, j)

η1αi|〈xi|Π|yj〉|2 + η2βj |〈xi|1−Π|yj〉|2 ≥

min(η1αi, η2βj)
|〈xi|yj〉|2

2
, (11)

which implies that

η1Pe|% + η2Pe|ς ≥
1
2

∑
i,j

min
(
η1αi|〈xi|yj〉|2, η2βj |〈xi|yj〉|2

)
. (12)

Now, following [5], consider two probability distributions
defined by the Nussbaum-Szkoła mapping

P1(i, j) = αi|〈xi|yj〉|2, P2(i, j) = βj |〈xi|yj〉|2. (13)

These two probability distributions are both strictly positive
for at least one pair of (i, j) values, since we assumed %, ς
to have non-disjoint supports. Furthermore, they have the nice
property of allowing for µ(s), as defined in (2), the expression

µ(s) = log
∑
i,j

P1(i, j)1−sP2(i, j)s. (14)

Following [7, Th. 5], define the distribution Qs by

Qs(i, j) =
P1(i, j)1−sP2(i, j)s∑

i′,j′ P1(i′, j′)1−sP2(i′, j′)s
(15)

and observe that

µ′(s) = EQs
[log(P2/P1)] (16)

µ′′(s) = VarQs
[log(P2/P1)] , (17)

where the subscript Qs means that the expected values are
with respect to the probability distribution Qs. Hence, if one
defines the set

Ys =
{

(i, j) :
∣∣∣∣log

(
P2(i, j)
P1(i, j)

)
− µ′(s)

∣∣∣∣ ≤√2µ′′(s)
}

(18)

then
∑
Ys
Qs(i, j) > 1/2, by Chebyshev’s inequality. It is

easily checked, using the definitions (15) and (18), that for
each (i, j) ∈ Ys the distribution Qs satisfies

Qs(i, j) ≤ P1(i, j)
(

exp [µ(s)− sµ′(s)− s
√

2µ′′(s)]
)−1

(19)

Qs(i, j) ≤ P2(i, j)
(

exp[µ(s) + (1− s)µ′(s)

−(1− s)
√

2µ′′(s)]
)−1

. (20)

Hence, in Ys, Qs(i, j) is bounded by the minimum of the two
expressions on the right hand side of (19) and (20). If we call
η1 the coefficient of P1(i, j) in (19) and η2 the coefficient of
P2(i, j) in (20), then we obtain

1
2

<
∑

(i,j)∈Ys

Qs(i, j) (21)

≤
∑

(i,j)∈Ys

min (η1P1(i, j), η2P2(i, j)) (22)

≤
∑
(i,j)

min (η1P1(i, j), η2P2(i, j)) . (23)

Now note that the last expression, by the definition of P1

and P2 in (13), exactly equals the sum in (12). So, with the
selected values of η1 and η2 we have η1Pe|% + η2Pe|ς > 1/4.
But, obviously, η1Pe|% + η2Pe|ς ≤ 2 max{η1Pe|%, η2Pe|ς}.
Hence, either Pe|% > η−1

1 /8 or Pe|ς > η−1
2 /8, concluding

the proof.

III. SPHERE PACKING BOUND

Following [4], consider a classical-quantum channel with
an input alphabet of K symbols {1, . . . ,K} with associated
density operators Sk, k = 1, . . . ,K in a finite dimensional
Hilbert space H. The N -fold product channel acts in the
tensor product space H⊗N of N copies of H. To a code-
word w = (k1, k2, . . . , kN ) is associated the signal state
Sw = Sk1 ⊗Sk2 · · · ⊗SkN

. A block code with M codewords
is a mapping from a set of M messages {1, . . . ,M} into
a set of M codewords w1, . . . ,wM . A quantum decision
scheme for such a code is a collection of M positive operators
{Π1,Π2, . . . ,ΠM} such that

∑
Πi ≤ 1. The rate of the code

is defined as R = (logM)/N .
The probability that message m′ is decoded when message

m is transmitted is P (m′|m) = Tr Πm′Swm and the total
probability of error after sending message m is Pe,m =
1−Tr (ΠmSwm

). We then define the maximum probability of
error of the code Pe,max = maxm Pe,m and, for any positive
R and integer N , we define P

(N)
e,max(R) as the minimum

maximum error probability over all codes of block length N
and rate at least R.

For rates R smaller than the capacity of the channel,
P

(N)
e,max(R) goes to zero exponentially fast in N . The reliability

function of the channel is defined as1

E(R) = lim sup
N→∞

− 1
N

logP (N)
e,max(R). (24)

The purpose of this section is to adapt the proof of the
sphere packing bound in [7, Sec. IV] to the case of quantum
channels. This results in the following theorem.

1It is known that the same function E(R) results if in (24) one substi-
tutes Pe,max with the average probability of error over codewords Pe =∑

m
Pe,m/M , see for example [7], [3].



Theorem 2 (Sphere Packing Bound): For all positive rates
R and all positive ε,

E(R) ≤ Esp(R− ε), (25)

where Esp(R) is defined by the relations

Esp(R) = sup
ρ≥0

[E0(ρ)− ρR] (26)

E0(ρ) = max
q

E0(ρ,q) (27)

E0(ρ,q) = − log Tr

(
K∑
k=1

qkS
1/(1+ρ)
k

)1+ρ

(28)

Remark 2: For some channels, the function Esp(R) can be
infinite for R small enough. The role of the arbitrarily small
constant ε is only important for one single value of the rate
R = R∞, which is the infimum of the rates R such that
Esp(R) is finite.

Proof: We follow closely the proof given in [7, Sec. IV]
for the classical case. Some steps are clearly to be adapted to
the quantum case and, since that proof is quite complicated, it
would not be easy to explain how to do that without at least
repeating the main steps of the proof. Hence, for the reader’s
convenience, we prefer to go through the whole proof used in
[7] directly speaking in terms quantum channels and trying to
simplify it as much as possible in view of the weaker results
that we are pursuing with respect to [7, Th. 5] (we are here
only interested in the asymptotic first order exponent, while
in [7], bounds for fixed M and N are obtained).

The key point is using Fano’s idea [2, Sec. 9.2] of bounding
the probability of error for at least one codeword wm by
studying a binary hypothesis testing problem between Swm

and a dummy state f , which is only used as a measure for the
decision operator Πm.

Here, we simplify the problem using the fact that for the
study of E(R) we can only consider the case of constant
composition codes (see [2] [7]). This observation clearly holds
also for classical-quantum channels, since it stems from the
fact that the number of different compositions only grows
polynomially in N , while the number of codewords grows
exponentially. Hence, let ck be the number of occurrences of
symbol k in each word and define then qk as the ratio ck/N , so
that the vector q = (q1, q2, . . . , qK) is obviously a probability
distribution over the K input symbols.

Let now f be a state in H⊗N . We will first apply Theorem
1 using one of the codewords as state % and f as state ς . This
will result in a trade-off between the rate of the code R and
the probability of error Pe,max, where both quantities will be
parameterized in the parameter s, a higher rate being allowed
if a larger Pe,max is tolerated and vice-versa. This trade-off
depends of course on q and f . We will later pick f properly
so as to obtain the best possible bound for a given R valid for
all compositions q.

For any m = 1 . . . ,M , consider the binary hypothesis
testing between Swm and f . We assume that Swm and f have
non-disjoint supports and define the quantity

µ(s) = log Tr S1−s
wm

fs. (29)

Applying Theorem 1 with % = Swm , ς = f and Π = 1−Πm,
we find that for each s in 0 < s < 1, either

Tr [(1−Πm) Swm
] >

1
8

exp
[
µ(s)− sµ′(s)− s

√
2µ′′(s)

]
(30)

or

Tr [Πmf ] >
1
8

exp
[
µ(s) + (1− s)µ′(s)− (1− s)

√
2µ′′(s)

]
.

(31)
Note now that Tr [(1−Πm) Swm ] = Pe,m ≤ Pe,max for all
m. Furthermore, since

∑M
m=1 Πm ≤ 1, for at least one value

of m we have Tr [Πmf ] ≤ 1/M = e−NR. Choosing this
particular m, we thus obtain from the above two equations
that either

Pe,max >
1
8

exp
[
µ(s)− sµ′(s)− s

√
2µ′′(s)

]
(32)

or

R < − 1
N

(
µ(s) + (1− s)µ′(s)− (1− s)

√
2µ′′(s)− log 8

)
(33)

In these equations we begin to see the aimed trade-off
between the rate and the probability of error. It is implicit
here in the definition of µ(s) that both equations depend on
Swm and f . Since m has been fixed, we can drop its explicit
indication and use simply w in place of wm from this point
on. We will now call R(s,Sw, f) the right hand side of (33).
This allows us to write µ′(s) in (32) in terms of R(s,Sw, f)
so that, taking the logarithm in equation (32), our conditions
can be rewritten as either

R < R(s,Sw, f) (34)
or

log
1

Pe,max
< − µ(s)

1− s
− sN

1− s
R(s,Sw, f)

+ 2s
√

2µ′′(s) +
log 8
1− s

. (35)

At this point, we exploit the fact that we are considering a
fixed composition code. Since we want our result to depend
only on the composition q and not on the particular sequence
w, we choose f so that the function µ(s) also only depends on
the composition q. We thus choose f to be the N -fold tensor
power of a state f in H, that is f = f⊗N . With this choice,
in fact, we easily check that, if w has composition q,

µ(s) = log Tr S1−s
w fs (36)

= N

K∑
k=1

qk log
(
TrS1−s

k fs
)
. (37)

Thus, µ(s) actually only depends on the composition q and
on f , and not on the particular w. It is useful to remember
that since we assumed the supports of f and Sw to be non-
disjoint, the supports of Sk and f are not disjoint if qk > 0,
so that all terms in the sum are well defined. Setting

µk,f (s) := log
(
TrS1−s

k fs
)

(38)

we thus have

µ(s) = N
∑
k

qkµk,f (s) (39)



and hence, obviously,

µ′′(s) = N
∑

qkµ
′′
k,f (s). (40)

With the same procedure used to obtain (17) using the
Nussbaum-Szkoła mapping (13), we see that for fixed s and
f , µ′′k,f (s) is a variance of a finite random variable and it is
thus a finite non-negative real number. Taking the largest of
these numbers over k, say C(s, f), we find that

µ′′(s) ≤ NC(s, f). (41)

We also observe that since µ′′k,f (s) ≥ 0 for all k, µk,f (s) is
convex in s for all choices of f , a fact that will be useful later.

The essential point here is that the contribution of µ(s)
and µ′(s) in our bounds will grow linearly in N , while the
contribution of µ′′(s) will only grow with

√
N . Hence, the

terms involving µ′′(s) become unimportant for large N . A
formalization of this fact, however, is tricky. In [7] the effect of
µ′′(s) in the classical case is dealt with by bounding s2µ′′k,f (s)
by a constant uniformly over s and f , which allows the authors
to proceed in deriving a bound on Pe,max for all fixed M and
N .

In our case, this procedure cannot be applied in a simple
way (see [8] for details on the reasons) and we have to take
at this point a slightly different approach, which will allow us
to find a bound on E(R) using the asymptotic regime N →
∞. Simplifying again the notation in light of the previous
observations, let us write R(s,q, f) for R(s,Sw, f). Using
the obtained expression for µ(s), our conditions are either

R < R(s,q, f) (42)

or
1
N

log
1

Pe,max
< − 1

1− s
∑
k

qkµk,f (s)− s

1− s
R(s,q, f)

+
1
N

(
2s
√

2µ′′(s) +
log 8
1− s

)
. (43)

Now we come to the most critical step. Given a rate R,
we want to bound Pe,max for all codes. Here, we should
choose s and f optimally depending on q and R, but we
should then optimize the composition q in order to have a
bound valid for all codes. This direct approach, even in the
classical case, turns out to be very complicated (see [2, Sec. 9.3
and 9.4, pag. 188-303] for a detailed and however instructive
analysis). The authors in [7] thus proceed in a more synthetic
way by stating the resulting optimal f and q as a function
of s and then proving that this choice leads to the desired
bound. Here, we will follow this approach showing that the
same reasoning can be applied also to the case of quantum
channels. It is important to point out that it is not possible to
simply convert the quantum problem to the classical one using
the Nussbaum-Szkoła mapping (13) directly on the states Sk
and f and then using the construction of [7, eqs. (4.18)-(4.20)]
on the obtained classical distributions. In fact, in (13), even
if one of the two states is kept fixed and only the other one
varies, both distributions vary. Thus, even if f is kept fixed,
the effect of varying Sk for the different values of k would not
be compatible with the fact that in [7, eq. (4.20)] a fixed fs

(in that notation) is defined, which is not supposed to depend
on k. Fortunately, it is instead possible to exactly replicate the
steps used in [7] by correctly reinterpreting the construction
of f and q in the quantum setting.

For a fixed s in the interval 0 < s < 1, consider the quantity

E0

(
s

1− s
,q
)

= − log Tr

(∑
k

qkS
1−s
k

)1/(1−s)

(44)

and call qs = (q1,s, . . . , qK,s) the choice of q that maximizes
this expression. As observed by Holevo2 [4, eq. (38)], qs
satisfies the conditions

Tr
(
S1−s
k αs/(1−s)s

)
≥ Tr

(
α1/(1−s)
s

)
; k = 1, . . . ,K

(45)
where

αs =
K∑
k=1

qk,sS
1−s
k . (46)

Furthermore, equation (45) is satisfied with equality for those
k with qk,s > 0, as can be verified by multiplying it by qk,s
and summing over k.

Define now

fs =
α

1/(1−s)
s

Trα1/(1−s)
s

. (47)

Since we can choose s and f freely, we will now tie the
operator f to the choice of s, using fs for f . We only have to
keep in mind that µ′(s) and µ′′(s) are computed by holding f
fixed. Note further that we fullfill the requirement that f and
Sk have non-disjoint supports, since the left hand side in (45)
must be positive for all k.

As in [7, eqs (4.21)-(4.22)], we see that, using fs in place
of f in the definition of µk,f (s), we get

µk,fs
(s) = log Tr

(
S1−s
k αs/(1−s)s

)
− s log Trα1/(1−s)

s . (48)

Using (45) we then see that
µk,fs(s) ≥ (1− s) log Trα1/(1−s)

s (49)

= −(1− s)E0

(
s

1− s
,qs

)
(50)

= −(1− s)E0

(
s

1− s

)
(51)

with equality if qk,s > 0. Here, we have used the definitions
(46), (28) and (27), and the the fact that qs maximizes (44).
Thus, with the choice of f = fs, equations (42) and (43) can
be rewritten as (for each s) either

R < R(s,q, fs) (52)
or

1
N

log
1

Pe,max
< E0

(
s

1− s

)
− s

1− s
R(s,q, fs)

+
2s
√

2√
N

√∑
k

qkµ′′k,fs
(s) +

log 8
(1− s)N

(53)

2The variable s in [4] corresponds to our s/(1− s), that we call ρ here in
accordance with the consolidated classical notation.



where

R(s,q, fs) = −
∑
k

qkµk,fs
(s)− (1− s)

∑
k

qkµ
′
k,fs

(s)

+
1√
N

(1− s)
√

2
∑
k

qkµ′′k,fs
(s) +

1
N

log 8. (54)

Using the same procedure used in [7, pag. 100-102], invok-
ing the strict convexity of Tr(α1/(1−s)) in α for 0 < s < 1, it
can be proved that R(s,q, fs) is a continuous function of s.
Thus, for fixed R, we can only have three possibilities:

1) R = R(s,q, fs) for some s in (0, 1);
2) R > R(s,q, fs) ∀s ∈ (0, 1);
3) R < R(s,q, fs) ∀s ∈ (0, 1).
Our conditions are slightly different from those in [7] due

to the fact that we have not been able to bound uniformly
the second derivatives µ′′k,fs

(s) for s ∈ (0, 1). For this same
reason, dealing with these possibilities for a fixed code is
more complicated in our case than in [7]. Thus, we have to
depart slightly from [7]. Due to space limitation, we can give
here only a concise explanation that should be sufficient when
integrated with [7], the interested reader can find more precise
technical details in [8].

Instead of considering a fixed code of block length N , con-
sider sequences of codes. From the definition of E(R) in (24),
it is obvious that there exists a sequence of codes of block-
lengths N1, N2, . . . , Nn, . . . , and rates R1, R2, . . . , Rn, . . .
such that R = limnRn and

E(R) = lim
n→∞

− 1
Nn

logP (Nn)
e,max(R). (55)

Each code of the sequence will in general have a different
composition qn but must anyway fall in one of the above
three cases. Thus, one of those cases is verified infinitely often.
Since the compositions qn are in a bounded set, there exists a
subsequence of codes such that qn converge to, say, q̄. Thus,
we can directly assume this subsequence is our own sequence
and safely assume that qn → q̄.

Suppose now that case (1) is verified infinitely often. Thus,
for infinitely many n, there is an s = sn in the interval 0 < s <
1 such that Rn = R(s,qn, fsn). Hence, since the values sn are
in the interval (0, 1), there must exists an accumulation point
for the sn in the closed interval [0, 1]. We will first assume
that an accumulation point s̄ exists satisfying 0 < s̄ < 1. A
subsequence of codes then exists with the sn tending to s̄. Let
this subsequence be our new sequence. We can first substitute
R(sn,qn, fsn) with Rn in (53). Letting then n→∞, we find
that Rn → R and the last two terms on the right hand side of
(53) vanish. Hence, we obtain

E(R) ≤ E0

(
s̄

1− s̄

)
− s̄

1− s̄
R (56)

≤ sup
ρ≥0

(E0 (ρ)− ρR) (57)

= Esp(R). (58)

Suppose now that either case (2) above is verified infinitely
often, or that case (1) is with the only accumulating point
s̄ = 0 for the values sn. Given any ε1 > 0, for any fixed

s ∈ [ε1, 1) we must have R(s,qn, fs) ≤ Rn infinitely often.
Since condition (52) is not satisfied, (53) must be satisfied
infinitely often for any fixed s ∈ [ε1, 1). Making n → ∞ we
can get rid again of the last two terms in (53) and have

E(R) ≤ E0

(
s

1− s

)
− s

1− s
R(s, q̄, f) (59)

Letting then ε1 → 0, we can let s → 0 as well and find that
E(R) ≤ 0. Thus, surely E(R) ≤ Esp(R) proving the theorem
in this case (see [8] for more details here).

Suppose finally that either case (3) above is verified in-
finitely often, or that case (1) is with the only accumulating
point s̄ = 1 for the values sn. Given any ε1 > 0, for all
s ∈ (0, 1 − ε1], the inequality Rn < R(s,qn, fs) is verified
infinitely often, so that we can take this time the limit n→∞
in (52) and (54). Proceeding exactly as in [7], we can then
use the convexity of µk,f (s) and (51) to prove that

R ≤ 1− s
s

E0

(
s

1− s

)
(60)

for all s ∈ (0, 1 − ε1]. Setting ρ = s/(1 − s) and ρ1 =
(1− ε1)/ε1, this implies that for any ε2 > 0,
Esp (R− ε2) = sup

ρ≥0
(E0 (ρ)− ρ (R− ε2))

≥ sup
0≤ρ≤(1−ε1)/ε1

(E0 (ρ)− ρ (R− ε2))

≥ sup
0≤ρ≤(1−ε1)/ε1

ρε2

=
(1− ε1)ε2

ε1
.

which is arbitrarily large for any ε2 if ε1 is small enough. This
proves that Esp(R− ε2) is unbounded for arbitrarily small ε2
and thus surely E(R) ≤ Esp(R− ε2), concluding the proof.
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