An Elias Bound on the Bhattacharyya Distance of Codes for Channels with a Zero-Error Capacity

Marco Dalai
Department of Information Engineering
University of Brescia - Italy

International Symposium on Information Theory, 2014
Elias Bound for Binary Codes

- **Alphabet:** $\mathcal{X} = \{0, 1\}$
- **Sequence:** $x = (x_1, x_2, \ldots, x_n), \; x_i \in \mathcal{X}$
- **Hamming Distance:**
 \[
 d_H(x, x') = \sum_{i=1}^{n} d_H(x_i, x'_i), \quad \text{where } d_H(x, x') = \begin{cases}
 0 & \text{if } x = x' \\
 1 & \text{if } x \neq x'
 \end{cases}
 \]
- **Code:** $\mathcal{C} = \{x_1, x_2, \ldots, x_M\}, \; x_i \in \mathcal{X}^n$.
- **Rate:** $R = \log M/n$
- **Minimum Distance:**
 \[
 d_{\text{min}}(\mathcal{C}) = \min_{i \neq j} d_H(x_i, x_j)
 \]
Elias Bound for Binary Codes

- **Optimal Distance:**
 \[d(R, n) = \max_{\mathcal{C}} d_{\min}(\mathcal{C}) \]
 over codes of length \(n \) and rate at least \(R \).

- **Asymptotic Distance:**
 \[\delta^*(R) = \limsup_{n \to \infty} \frac{1}{n} d(R, n) \]

Theorem (Elias’ bound)

If \(R = 1 - h(\lambda) \), \(\lambda \in (0, 1/2) \), then

\[\delta^*(R) \leq 2\lambda(1 - \lambda) \]
Sketch of the proof

- n-bit sequences

\[\sum_{x, x' \in C} d(x, x') \leq M(M-1) \sum_{x, x' \in \subset T \subset C} d(x, x') \]

This is not very good.

Use the Plotkin bound on T

\[d_{\text{min}} \leq \frac{1}{|T|}(|T| - 1) \sum_{x, x' \in T} d(x, x') \]

= $n \sum_{i=1}^{\infty} \left(\sum_{x, x' \in T} d(x_i, x'_i) \right)$
Sketch of the proof

- n-bit sequences
- Codewords
Sketch of the proof

The Plotkin bound on \mathcal{C} would say

$$d_{\min} \leq \frac{1}{M(M - 1)} \sum_{x, x' \in \mathcal{C}} d(x, x')$$

... this is not very good.
Sketch of the proof

\[d_{\text{min}} \leq \frac{1}{M} \left(M - 1 \right) \sum_{x, x' \in C} d(x, x') \]

... this is not very good.

Use the Plotkin bound on \(T \)

\[d_{\text{min}} \leq \frac{1}{|T|} \left(|T| - 1 \right) \sum_{x, x' \in T} d(x, x') = \sum_{i=1}^{n} \left(\sum_{x, x' \in T} d_{i}(x, x') \right) \]
Sketch of the proof
Sketch of the proof

Subset $\mathcal{T} \subset \mathcal{C}$.

\[
\text{Bound in terms of } \sum_{x \in \mathcal{T}} d(x_i, \bar{x}_i)
\]

Use constraint on \[
\sum_{x \in \mathcal{T}} d(x, \bar{x})
\]
Sketch of the proof

Subset $\mathcal{T} \subset \mathcal{C}$.

Use the Plotkin bound on \mathcal{T}

$$d_{\text{min}} \leq \frac{1}{|\mathcal{T}|(|\mathcal{T}| - 1)} \sum_{x,x' \in \mathcal{T}} d(x, x')$$

$$= \sum_{i=1}^{n} \left(\sum_{x,x' \in \mathcal{T}} d(x_i, x'_i) \right)$$
Sketch of the proof

Subset $\mathcal{T} \subset \mathcal{C}$.

Use the Plotkin bound on \mathcal{T}

$$d_{\min} \leq \frac{1}{|\mathcal{T}|(|\mathcal{T}| - 1)} \sum_{x, x' \in \mathcal{T}} d(x, x')$$

$$= \sum_{i=1}^{n} \left(\sum_{x, x' \in \mathcal{T}} d(x_i, x'_i) \right)$$

Use constraint on $\sum_{x \in \mathcal{T}} d(x, \bar{x})$

Bound in terms of $\sum_{x \in \mathcal{T}} d(x_i, \bar{x}_i)$
Extensions

- **Berlekamp:**
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \ldots, q - 1\}$
 - Distances: Hamming, Lee

- **Piret**
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,...,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean

- **Blahut:**
 - \mathcal{X} input alphabet of a DMC $W(y|x)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

\[
 d_B(x, x') = -\log \sum_y \sqrt{W(y|x)W(y|x')}
\]

- Assuming $d_B(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$
Extensions

- **Berlekamp:**
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \ldots, q - 1\}$
 - Distances: Hamming, Lee

- **Piret**
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,\ldots,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean

- **Blahut:**
 - \mathcal{X} input alphabet of a DMC $W(y|x)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

$$d_B(x, x') = -\log \sum_y \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_B(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$
Extensions

- Berlekamp:
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \ldots, q - 1\}$
 - Distances: Hamming, Lee

- Piret
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0}^{q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean

- Blahut:
 - \mathcal{X} input alphabet of a DMC $W(y|x)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

\[d_B(x, x') = -\log \sum_y \sqrt{W(y|x)W(y|x')} \]

- Assuming $d_B(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$
Extensions

Berlekamp:
- $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \ldots, q-1\}$
- Distances: Hamming, Lee

Piret
- $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0}^{q-1}$ (uniform points on the unit circle)
- Distance: squared euclidean

Blahut:
- \mathcal{X} input alphabet of a DMC $W(y|x)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$
- Distance: Bhattacharyya distance

$$d_B(x, x') = -\log \sum_y \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_B(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$
Extensions

- **Berlekamp:**
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \ldots, q - 1\}$
 - Distances: Hamming, Lee

- **Piret**
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,\ldots,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean

- **Blahut:**
 - \mathcal{X} input alphabet of a DMC $W(y|x)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

$$d_B(x, x') = -\log \sum_y \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_B(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $\left(\sum_y \sqrt{W(y|x)W(y|x')}\right)^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$
Blahut’s bound

Theorem (Blahut)

\[\delta^*(R) \leq \max_P \min_{V \in \mathcal{V}(P,R)} \sum_x P(x) \sum_{x_1,x_2} V(x_1|x)V(x_2|x)d_B(x_1,x_2) \]

(1)

where

\[\mathcal{V}(P,R) = \{ V : PV = P, I(P,V) \leq R \}. \]

(2)
Blahut’s bound

Theorem (Blahut)

\[
\delta^*(R) \leq \max_P \min_{V \in \mathcal{V}(P,R)} \sum_x P(x) \sum_{x_1,x_2} V(x_1|x)V(x_2|x) d_B(x_1,x_2) \tag{1}
\]

where

\[
\mathcal{V}(P,R) = \{ V : PV = P, I(P,V) \leq R \}. \tag{2}
\]

Comments

- \(d_B(x, x') < \infty \) is needed for the Plotkin bound

\[
\frac{1}{|\mathcal{T}|(|\mathcal{T}| - 1)} \sum_{x, x' \in \mathcal{T}} d(x, x') \tag{3}
\]
Blahut’s bound

Theorem (Blahut)

\[
\delta^*(R) \leq \max_P \min_{V \in \mathcal{V}(P,R)} \sum_x P(x) \sum_{x_1, x_2} V(x_1 | x) V(x_2 | x) d_B(x_1, x_2) \tag{1}
\]

where

\[
\mathcal{V}(P, R) = \{V : PV = P, I(P, V) \leq R\}. \tag{2}
\]

Comments

- \(d_B(x, x') < \infty\) is needed for the Plotkin bound

\[
\frac{1}{|\mathcal{T}|(|\mathcal{T}| - 1)} \sum_{x, x' \in \mathcal{T}} d(x, x') \tag{3}
\]

- That \(\{(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}\}\) be p.s. is asked because it gives concavity of \(\in \mathcal{V}(\cdot|x)\)
Comments

- The previous two conditions asked in Blahut’s bound imply that \(d_B \) is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp’s and Piret’s bounds

Problem

- If the channel has a zero-error capacity \(d_B(x, x') = \infty \) for some \(x, x' \)
- The Plotkin bound is useless

⇒ Find a bound which holds for all discrete channels
Blahut’s Bound

Comments
- The previous two conditions asked in Blahut’s bound imply that d_B is a squared Euclidean distance.
- The bound actually holds for all squared Euclidean distances.
- It includes Berlekamp’s and Piret’s bounds.

Problem
- If the channel has a zero-error capacity $d_B(x, x') = \infty$ for some x, x'.
- The Plotkin bound is useless.
- Find a bound which holds for all discrete channels.

M. Dalai
Elias Bound for Channels with a Zero-Error Capacity
ISIT 2014
Blahut’s Bound

Comments

- The previous two conditions asked in Blahut’s bound imply that d_B is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp’s and Piret’s bounds

Problem

- If the channel has a zero-error capacity $d_B(x, x') = \infty$ for some x, x'
- The Plotkin bound is useless

\implies Find a bound which holds for all discrete channels
Blahut’s Bound

Comments

- The previous two conditions asked in Blahut’s bound imply that d_B is a squared euclidean distance.
- The bound actually holds for all squared euclidean distances.
- It includes Berlekamp’s and Piret’s bounds.

Problem

- If the channel has a zero-error capacity $d_B(x, x') = \infty$ for some x, x'
 - The Plotkin bound is useless.

⇒ Find a bound which holds for all discrete channels.
Blahut’s Bound

Comments

- The previous two conditions asked in Blahut’s bound imply that d_B is a squared euclidean distance.
- The bound actually holds for all squared euclidean distances.
- It includes Berlekamp’s and Piret’s bounds.

Problem

- If the channel has a zero-error capacity $d_B(x, x') = \infty$ for some x, x'.
- The Plotkin bound is useless.

⇒ Find a bound which holds for all discrete channels.
Comments

- The previous two conditions asked in Blahut’s bound imply that d_B is a squared euclidean distance.
- The bound actually holds for all squared euclidean distances.
- It includes Berlekamp’s and Piret’s bounds.

Problem

- If the channel has a zero-error capacity $d_B(x, x') = \infty$ for some x, x'.
- The Plotkin bound is useless.

⇒ Find a bound which holds for all discrete channels.
Key Idea

Let $W(y|x)$ be the memoryless extension of the channel

- We want to upper bound

$$d_B(x_i, x_j) = -\log \sum_y \sqrt{W(y|x_i)W(y|x_j)}$$ \hspace{1cm} (4)

for some $x_i, x_j \in \mathcal{C}$

- Get rid of the log and replace the Plotkin step with a Lovász-like approach to lower bound

$$\min_{i \neq j} \sum_y \sqrt{W(y|x_i)W(y|x_j)}$$ \hspace{1cm} (5)

- We still identify a subset \mathcal{T} but somehow use

$$d_{\min} \leq -\rho \log \left(\max_{x \in \mathcal{T}} \frac{1}{(|\mathcal{T}| - 1)} \sum_{x' \in \mathcal{T}\{x\}} e^{-d(x,x')/\rho} \right).$$ \hspace{1cm} (6)
Let \(W(y|x) \) be the memoryless extension of the channel

- We want to upper bound

\[
d_B(x_i, x_j) = -\log \sum_y \sqrt{W(y|x_i)W(y|x_j)}
\] (4)

for some \(x_i, x_j \in \mathcal{C} \)

- Get rid of the log and replace the Plotkin step with a Lovász-like approach to lower bound

\[
\min_{i \neq j} \sum_y \sqrt{W(y|x_i)W(y|x_j)}
\] (5)

- We still identify a subset \(T \) but somehow use

\[
d_{\text{min}} \leq -\rho \log \left(\max_{x \in T} \frac{1}{(|T| - 1)} \sum_{x' \in T \setminus \{x\}} e^{-d(x, x')/\rho} \right). \] (6)
Key Idea

Let $W(y|x)$ be the memoryless extension of the channel

- We want to upper bound

$$d_B(x_i, x_j) = -\log \sum_y \sqrt{W(y|x_i)W(y|x_j)}$$ \hspace{1cm} (4)

for some $x_i, x_j \in \mathcal{C}$

- Get rid of the log and replace the Plotkin step with a Lovász-like approach to lower bound

$$\min_{i \neq j} \sum_y \sqrt{W(y|x_i)W(y|x_j)}$$ \hspace{1cm} (5)

- We still identify a subset \mathcal{T} but somehow use

$$d_{\min} \leq -\rho \log \left(\max_{x \in \mathcal{T}} \left(\frac{1}{|\mathcal{T}| - 1} \sum_{x' \in \mathcal{T}\setminus\{x\}} e^{-d(x,x')/\rho} \right) \right).$$ \hspace{1cm} (6)
Starting point: the \(\vartheta(\rho) \) function

Define

- \(\psi_x = \sqrt{W(\cdot | x)} \), so that \(d_B(x, x') = -\log \psi_x^\dagger \psi_{x'} \).
- Similarly \(\psi_x = \sqrt{W(\cdot | x)} \), so that \(d_B(x, x') = -\log \psi_x^\dagger \psi_{x'} \).

Collections of “tilted” vectors

\[
\Gamma(\rho) = \left\{ \{\tilde{\psi}_x\} : |\tilde{\psi}_x^\dagger \tilde{\psi}_{x'}| \leq (\psi_x^\dagger \psi_{x'})^{1/\rho} \right\}. \tag{7}
\]

An extension of the Lovász theta function

\[
\vartheta(\rho) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_f \max_x \log \frac{1}{|\tilde{\psi}_x^\dagger f|^2} \tag{8}
\]

Theorem (Dalai, ISIT’2013)

\[
\max_{m' \neq m} \psi_m^\dagger \psi_{m'} \geq \left(\frac{Me^{-n\vartheta(\rho)} - 1}{M - 1} \right)^{\rho}.
\]
Starting point: the $\vartheta(\rho)$ function

Define

- $\psi_x = \sqrt{W(\cdot|x)}$, so that $d_B(x, x') = -\log \psi_x^\dagger \psi_{x'}$.
- Similarly $\psi_x = \sqrt{W(\cdot|x)}$, so that $d_B(x, x') = -\log \psi_x^\dagger \psi_{x'}$.
- Collections of “tilted” vectors

$$\Gamma(\rho) = \left\{ \{\tilde{\psi}_x\} \mid |\tilde{\psi}_x^\dagger \tilde{\psi}_{x'}| \leq (\psi_x^\dagger \psi_{x'})^{1/\rho} \right\}.$$ (7)

- An extension of the Lovász theta function

$$\vartheta(\rho) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_{f} \max_{x} \log \frac{1}{|\tilde{\psi}_x^\dagger x f|^2}$$ (8)

Theorem (Dalai, ISIT’2013)

$$\max_{m' \neq m} \psi_{m'}^\dagger \psi_m \geq \left(\frac{Me^{-n\vartheta(\rho)} - 1}{M - 1} \right)^\rho.$$
Define

- \(\psi_x = \sqrt{W(\cdot|x)} \), so that \(d_B(x, x') = -\log \psi_x^\dagger \psi_{x'} \).
- Similarly \(\psi_x = \sqrt{W(\cdot|x)} \), so that \(d_B(x, x') = -\log \psi_x^\dagger \psi_{x'} \).
- Collections of “tilted” vectors

\[
\Gamma(\rho) = \left\{ \{\tilde{\psi}_x\} : |\tilde{\psi}_x^\dagger \tilde{\psi}_{x'}| \leq (\psi_x^\dagger \psi_{x'})^{1/\rho} \right\}.
\] (7)

- An extension of the Lovász theta function

\[
\vartheta(\rho) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_{f} \max_{x} \log \frac{1}{|\tilde{\psi}_x f|^2}.
\] (8)

Theorem (Dalai, ISIT’2013)

\[
\max_{m' \neq m} \psi_{m'}^\dagger \psi_{m'} \geq \left(\frac{Me^{-n\vartheta(\rho)} - 1}{M - 1} \right)^\rho.
\]
Starting point: the $\vartheta(\rho)$ function

Bound on $\delta(R)$ (Lovász-like variation of Plotkin’s bound)

$$\max_{m' \neq m} \psi^\dagger_m \psi_{m'} \geq (\frac{Me^{-n\vartheta(\rho)} - 1}{M - 1})^\rho$$

$$\downarrow (n \to \infty)$$

$$\delta(R) \leq \rho \vartheta(\rho) \text{ for } R > \vartheta(\rho)$$ \hfill (9)

$$\downarrow (\rho \to \infty)$$

$$\delta(R) < \infty \text{ for } R > \vartheta \quad \text{(Lovász)}$$

Next steps
- Constant (conditional) composition codes
- Identify the subset \mathcal{T}
Constant composition codes

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P

- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

$$
\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_{f} \sum_{x} P(x) \log \frac{1}{|\tilde{\psi}_x f|^2} \tag{10}
$$

Then, for codes with composition P

$$
\max_{m' \neq m} \psi_m^\dagger \psi_{m'} \geq \left(\frac{Me^{-n\vartheta(\rho, P)} - 1}{M - 1} \right)^{\rho}
$$

Bound on $\delta(R, P)$

$$
\delta(R, P) \leq \rho \vartheta(\rho, P) \text{ for } R > \vartheta(\rho, P) \tag{11}
$$
Constant composition codes

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P
- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

$$
\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_f \sum_x P(x) \log \frac{1}{|\tilde{\psi}_x f|^2}
$$

(10)

Then, for codes with composition P

$$
\max_{m' \neq m} \psi^\dagger_m \psi_{m'} \geq \left(\frac{Me^{-n\vartheta(\rho, P)} - 1}{M - 1} \right)^\rho.
$$

Bound on $\delta(R, P)$

$$
\delta(R, P) \leq \rho \vartheta(\rho, P) \text{ for } R > \vartheta(\rho, P)
$$

(11)
Constant composition codes

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P
- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

\[
\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_f \sum_x P(x) \log \frac{1}{|\tilde{\psi}_x f|^2}
\]

Then, for codes with composition P

\[
\max_{m' \neq m} \psi^\dagger_m \psi_{m'} \geq \left(\frac{Me^{-n\vartheta(\rho, P)} - 1}{M - 1} \right)^\rho.
\]

Bound on $\delta(R, P)$

\[
\delta(R, P) \leq \rho \vartheta(\rho, P) \text{ for } R > \vartheta(\rho, P)
\]

M. Dalai
Elias Bound for Channels with a Zero-Error Capacity
ISIT 2014
Constant composition codes

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P
- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

\[
\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min f \sum_{x} P(x) \log \frac{1}{|\tilde{\psi}_x f|^2} \tag{10}
\]

Then, for codes with composition P

\[
\max_{m' \neq m} \psi^\dagger_m \psi_{m'} \geq \left(\frac{Me^{-n\vartheta(\rho, P)} - 1}{M - 1}\right)^{\rho}.
\]

Bound on $\delta(R, P)$

\[
\delta(R, P) \leq \rho \vartheta(\rho, P) \text{ for } R > \vartheta(\rho, P) \tag{11}
\]
Further extension

- For a distribution P and a $|\mathcal{X}| \times |\mathcal{X}|$ stochastic matrix $V : \mathcal{X} \rightarrow \mathcal{X}$, define

$$\vartheta(\rho, P, V) = \sum_{x} P(x) \vartheta(\rho, V(\cdot | x))$$

(12)

- If we have a set \mathcal{T} codewords x_i with conditional composition V given a fixed sequence \bar{x}, then

$$\max_{m \neq m'} \psi_{x_m}^\dagger \psi_{x_{m'}} \geq \left(\frac{|\mathcal{T}| e^{-n\vartheta(\rho, P, V)} - 1}{|\mathcal{T}| - 1}\right)^\rho.$$

(13)

- We now only have to identify \bar{x} and \mathcal{T}
- We want $|\mathcal{T}| \approx e^{n(\vartheta(\rho, P, V) + \varepsilon)}$
For a distribution P and a $|\mathcal{X}| \times |\mathcal{X}|$ stochastic matrix $V : \mathcal{X} \rightarrow \mathcal{X}$, define

$$\vartheta(\rho, P, V) = \sum_x P(x) \vartheta(\rho, V(\cdot|x))$$ \hspace{1cm} (12)

If we have a set \mathcal{T} codewords x_i with conditional composition V given a fixed sequence \bar{x}, then

$$\max_{m \neq m'} \psi_{\bar{x}_m}^\dagger \psi_{\bar{x}_{m'}} \geq \left(\frac{|\mathcal{T}| e^{-n \vartheta(\rho, P, V)} - 1}{|\mathcal{T|} - 1} \right)^\rho.$$ \hspace{1cm} (13)

We now only have to identify \bar{x} and \mathcal{T}

We want $|\mathcal{T}| \approx e^{n(\vartheta(\rho, P, V) + \epsilon)}$
Further extension

- For a distribution \(P \) and a \(|\mathcal{X}| \times |\mathcal{X}|\) stochastic matrix \(V : \mathcal{X} \rightarrow \mathcal{X} \), define

\[
\vartheta(\rho, P, V) = \sum_x P(x)\vartheta(\rho, V(\cdot|x)) \tag{12}
\]

- If we have a set \(\mathcal{T} \) codewords \(x_i \) with conditional composition \(V \) given a fixed sequence \(\bar{x} \), then

\[
\max_{m \neq m'} \psi_{x_m}^\dagger \psi_{x_{m'}} \geq \left(\frac{|\mathcal{T}| e^{-n\vartheta(\rho,P,V)} - 1}{|\mathcal{T}| - 1} \right) ^\rho. \tag{13}
\]

- We now only have to identify \(\bar{x} \) and \(\mathcal{T} \)

- We want \(|\mathcal{T}| \approx e^{n(\vartheta(\rho,P,V) + \varepsilon)}\)
Lemma (Blahut)

Given a code with \(M = e^{nR} \) codewords of composition \(P \), let \(V \) be stochastic matrix such that \(nP(x)V(x'|x) \) an integer, \(PV = P \), and

\[
R \geq I(P, V) + \vartheta(\rho, P, V) + \varepsilon. \tag{14}
\]

Then, there is at least one sequence \(\bar{x} \) of composition \(P \) (not necessarily a codeword) such that there are at least \(e^{n(\vartheta(\rho, P, V)+\varepsilon-o(1))} \) codewords with conditional composition \(V \) from \(\bar{x} \).

Theorem (Main result)

For given \(R, P \) and \(\rho \geq 0 \), let \(V \) be a \(|X| \times |X| \) stochastic matrix such that \(PV = P \). Then

\[
\delta^*(R, P) \leq \rho \vartheta(\rho, P, V), \text{ for } R > I(P, V) + \vartheta(\rho, P, V). \tag{15}
\]
Last step: define \mathcal{T}

Lemma (Blahut)

Given a code with $M = e^{nR}$ codewords of composition P, let V be stochastic matrix such that $nP(x)V(x'|x)$ an integer, $PV = P$, and

$$R \geq I(P, V) + \vartheta(\rho, P, V) + \varepsilon. \quad (14)$$

Then, there is at least one sequence \bar{x} of composition P (not necessarily a codeword) such that there are at least $e^{n(\vartheta(\rho, P, V) + \varepsilon - o(1))}$ codewords with conditional composition V from \bar{x}.

Theorem (Main result)

For given R, P and $\rho \geq 0$, let V be a $|X| \times |X|$ stochastic matrix such that $PV = P$. Then

$$\delta^*(R, P) \leq \rho \vartheta(\rho, P, V), \text{ for } R > I(P, V) + \vartheta(\rho, P, V). \quad (15)$$
Comments1

- The bound can be formulated for general (not necessarily Bhattacharyya) distances
- For squared Euclidean distances, as $\rho \to \infty$ it gives back Blahut’s bound
- Blahut’s one includes Berlekamp’s and Piret’s
- Hence this bound includes all previous cases

Remarks

Comments

- The bound can be formulated for general (not necessarily Bhattacharyya) distances.
- For squared euclidean distances, as $\rho \to \infty$ it gives back Blahut’s bound.
- Blahut’s one includes Berlekamp’s and Piret’s.
- Hence this bound includes all previous cases.

The bound can be formulated for general (not necessarily Bhattacharyya) distances

For squared euclidean distances, as $\rho \to \infty$ it gives back Blahut’s bound

Blahut’s one includes Berlekamp’s and Piret’s

Hence this bound includes all previous cases

The bound can be formulated for general (not necessarily Bhattacharyya) distances.

For squared euclidean distances, as $\rho \to \infty$ it gives back Blahut’s bound.

Blahut’s one includes Berlekamp’s and Piret’s.

Hence this bound includes all previous cases.
