An Elias Bound on the Bhattacharyya Distance of Codes for Channels with a Zero-Error Capacity

Marco Dalai

Department of Information Engineering University of Brescia - Italy

International Symposium on Information Theory, 2014

Elias Bound for Binary Codes

- Alphabet: $X = \{0, 1\}$
- Sequence: $\boldsymbol{x} = (x_1, x_2, \dots, x_n), x_i \in \mathcal{X}$
- Hamming Distance:

$$d_{\rm H}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{i=1}^{n} d_{\rm H}(x_i, x_i'), \quad \text{where } d_{\rm H}(x, x') = \begin{cases} 0 & \text{if } x = x' \\ 1 & \text{if } x \neq x' \end{cases}$$

- Code: $\mathcal{C} = \{ \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_M \}, \, \boldsymbol{x}_i \in \mathcal{X}^n.$
- Rate: $R = \log M/n$
- Minimum Distance:

$$d_{\min}(\mathcal{C}) = \min_{i \neq j} d_{\mathrm{H}}(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

• Optimal Distance:

$$d(R,n) = \max_{\boldsymbol{\mathcal{C}}} d_{\min}(\boldsymbol{\mathcal{C}})$$

over codes of length n and rate at least R.

• Asymptotic Distance:

$$\delta^*(R) = \limsup_{n \to \infty} \frac{1}{n} d(R, n)$$

Theorem (Elias' bound)

If $R = 1 - h(\lambda)$, $\lambda \in (0, 1/2)$, then

$$\delta^*(R) \le 2\lambda(1-\lambda)$$

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

 \circ n-bit sequeces

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	٠	0	0	0	٠	0	0	0	0	0	٠
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	٠	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	٠	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	٠	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	٠	0	0	0	٠	0	0	0	0	0	٠	0	0

- \circ *n*-bit sequeces
- \bullet codewords

- \circ *n*-bit sequeces
- codewords

The Plotkin bound on \mathcal{C} would say

$$d_{\min} \leq \frac{1}{M(M-1)} \sum_{\boldsymbol{x}, \boldsymbol{x}' \in \boldsymbol{\mathcal{C}}} d(\boldsymbol{x}, \boldsymbol{x}')$$

... this is not very good.

- \circ *n*-bit sequeces
- \bullet codewords

- \circ *n*-bit sequeces
- \bullet codewords
- critical sequence \bar{x}

Subset $\mathcal{T} \subset \mathcal{C}$.

Use the Plotkin bound on ${\mathcal T}$

$$d_{\min} \leq \frac{1}{|\mathcal{T}|(|\mathcal{T}|-1)} \sum_{\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{T}} d(\boldsymbol{x}, \boldsymbol{x}')$$
$$= \sum_{i=1}^{n} \left(\sum_{\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{T}} d(x_{i}, x_{i}') \right)$$

- Berlekamp:
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \dots, q-1\}$
 - Distances: Hamming, Lee
- Piret
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,\dots,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean
- Blahut:
 - \mathcal{X} input alphabet of a DMC $W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

$$d_{\rm B}(x,x') = -\log \sum_{y} \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_{\rm B}(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$

- Berlekamp:
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \dots, q-1\}$
 - Distances: Hamming, Lee
- Piret
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,\dots,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean
- Blahut:
 - \mathcal{X} input alphabet of a DMC $W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

$$d_{\rm B}(x,x') = -\log \sum_{y} \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_{\rm B}(x,x')$ finite $\forall x,x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$

- Berlekamp:
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \dots, q-1\}$
 - Distances: Hamming, Lee
- Piret
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,\dots,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean
- Blahut:
 - \mathcal{X} input alphabet of a DMC $W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

$$d_{\rm B}(x,x') = -\log \sum_{y} \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_{\rm B}(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$

- Berlekamp:
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \dots, q-1\}$
 - Distances: Hamming, Lee
- Piret
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,\dots,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean
- Blahut:
 - \mathcal{X} input alphabet of a DMC $W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

$$d_{\rm B}(x,x') = -\log \sum_{y} \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_{\rm B}(x,x')$ finite $\forall x,x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \geq 1$

- Berlekamp:
 - $\mathcal{X} = \mathbb{Z}_q = \{0, 1, \dots, q-1\}$
 - Distances: Hamming, Lee
- Piret
 - $\mathcal{X} = \{e^{i2\pi k/q}\}_{k=0,\dots,q-1}$ (uniform points on the unit circle)
 - Distance: squared euclidean
- Blahut:
 - \mathcal{X} input alphabet of a DMC $W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$
 - Distance: Bhattacharyya distance

$$d_{\rm B}(x,x') = -\log \sum_{y} \sqrt{W(y|x)W(y|x')}$$

- Assuming $d_{\rm B}(x, x')$ finite $\forall x, x'$ (no zero-error capacity)
- Assuming that the matrix with entries $(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}$ is positive semidefinite for all $\rho \ge 1$

Theorem (Blahut)

$$\delta^*(R) \le \max_P \min_{V \in \mathcal{V}(P,R)} \sum_x P(x) \sum_{x_1, x_2} V(x_1|x) V(x_2|x) d_B(x_1, x_2)$$
(1)

where

$$\mathcal{V}(P,R) = \{V : PV = P, I(P,V) \le R\}.$$

Elias Bound for Channels with a Zero-Error Capacity

(2)

Theorem (Blahut)

$$\delta^*(R) \le \max_P \min_{V \in \mathcal{V}(P,R)} \sum_x P(x) \sum_{x_1, x_2} V(x_1|x) V(x_2|x) d_B(x_1, x_2)$$
(1)

where

$$\mathcal{V}(P,R) = \{V : PV = P, I(P,V) \le R\}.$$

Comments

• $d_{\rm B}(x,x') < \infty$ is needed for the Plotkin bound

$$\frac{1}{|\mathcal{T}|(|\mathcal{T}|-1)} \sum_{\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{T}} d(\boldsymbol{x}, \boldsymbol{x}')$$
(3)

Elias Bound for Channels with a Zero-Error Capacity

(2)

Blahut's bound

Theorem (Blahut)

$$\delta^{*}(R) \leq \max_{P} \min_{V \in \mathcal{V}(P,R)} \sum_{x} P(x) \underbrace{\sum_{x_{1},x_{2}} V(x_{1}|x) V(x_{2}|x) d_{B}(x_{1},x_{2})}_{x_{1},x_{2}}$$
(1)
where
$$\mathcal{V}(P,R) = \{V : PV = P, I(P,V) \leq R\}.$$
(2)

Comments

wh

• $d_{\rm B}(x,x') < \infty$ is needed for the Plotkin bound

$$\frac{1}{|\mathcal{T}|(|\mathcal{T}|-1)} \sum_{\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{T}} d(\boldsymbol{x}, \boldsymbol{x}')$$
(3)

• That $\{(\sum_y \sqrt{W(y|x)W(y|x')})^{1/\rho}\}$ be p.s. is asked because it gives concavity of \bigcirc in $V(\cdot|x)$

- The previous two conditions asked in Blahut's bound imply that $d_{\rm B}$ is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp's and Piret's bounds
- Problem
 - If the channel has a zero-error capacity $d_{\rm B}(x,x')=\infty$ for some x,x'
 - The Plotkin bound is useless
- \Rightarrow Find a bound which holds for all discrete channels

- The previous two conditions asked in Blahut's bound imply that $d_{\rm B}$ is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp's and Piret's bounds
- Problem
 - If the channel has a zero-error capacity $d_{\mathrm{B}}(x,x') = \infty$ for some x,x'
 - The Plotkin bound is useless
- \Rightarrow Find a bound which holds for all discrete channels

- The previous two conditions asked in Blahut's bound imply that $d_{\rm B}$ is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp's and Piret's bounds

Problem

- If the channel has a zero-error capacity $d_{\rm B}(x,x')=\infty$ for some x,x'
- The Plotkin bound is useless
- \Rightarrow Find a bound which holds for all discrete channels

- The previous two conditions asked in Blahut's bound imply that $d_{\rm B}$ is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp's and Piret's bounds

Problem

- If the channel has a zero-error capacity $d_{\rm B}(x,x')=\infty$ for some x,x'
- The Plotkin bound is useless
- \Rightarrow Find a bound which holds for all discrete channels

- The previous two conditions asked in Blahut's bound imply that $d_{\rm B}$ is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp's and Piret's bounds

Problem

- If the channel has a zero-error capacity $d_{\rm B}(x,x')=\infty$ for some x,x'
- The Plotkin bound is useless

Find a bound which holds for all discrete channels

- The previous two conditions asked in Blahut's bound imply that $d_{\rm B}$ is a squared euclidean distance
- The bound actually holds for all squared euclidean distances
- It includes Berlekamp's and Piret's bounds

Problem

- If the channel has a zero-error capacity $d_{\rm B}(x,x')=\infty$ for some x,x'
- The Plotkin bound is useless
- \Rightarrow Find a bound which holds for all discrete channels

Key Idea

Let $\boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x})$ be the memoryless extension of the channel

• We want to upper bound

$$d_{\rm B}(\boldsymbol{x}_i, \boldsymbol{x}_j) = -\log \sum_{\boldsymbol{y}} \sqrt{\boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_i) \boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_j)}$$
(4)

for some $x_i, x_j \in \mathcal{C}$

• Get rid of the log and replace the Plotkin step with a Lovász-like approach to lower bound

$$\min_{i \neq j} \sum_{\boldsymbol{y}} \sqrt{\boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_i) \boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_j)}$$
(5)

 \bullet We still identify a subset ${\mathcal T}$ but somehow use

$$d_{\min} \leq -\rho \log \left(\max_{\boldsymbol{x} \in \mathcal{T}} \frac{1}{(|\mathcal{T}| - 1)} \sum_{\boldsymbol{x}' \in \mathcal{T} \setminus \{\boldsymbol{x}\}} e^{-d(\boldsymbol{x}, \boldsymbol{x}')/\rho} \right).$$
(6)

Key Idea

Let $\boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x})$ be the memoryless extension of the channel

• We want to upper bound

$$d_{\rm B}(\boldsymbol{x}_i, \boldsymbol{x}_j) = -\log \sum_{\boldsymbol{y}} \sqrt{\boldsymbol{W}(\boldsymbol{y} | \boldsymbol{x}_i) \boldsymbol{W}(\boldsymbol{y} | \boldsymbol{x}_j)}$$
(4)

for some $\boldsymbol{x}_i, \boldsymbol{x}_j \in \boldsymbol{\mathcal{C}}$

• Get rid of the log and replace the Plotkin step with a Lovász-like approach to lower bound

$$\min_{i \neq j} \sum_{\boldsymbol{y}} \sqrt{\boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_i) \boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_j)}$$
(5)

• We still identify a subset \mathcal{T} but somehow use

$$d_{\min} \le -\rho \log \left(\max_{\boldsymbol{x} \in \mathcal{T}} \frac{1}{(|\mathcal{T}| - 1)} \sum_{\boldsymbol{x}' \in \mathcal{T} \setminus \{\boldsymbol{x}\}} e^{-d(\boldsymbol{x}, \boldsymbol{x}')/\rho} \right).$$
(6)

Key Idea

Let $\boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x})$ be the memoryless extension of the channel

• We want to upper bound

$$d_{\rm B}(\boldsymbol{x}_i, \boldsymbol{x}_j) = -\log \sum_{\boldsymbol{y}} \sqrt{\boldsymbol{W}(\boldsymbol{y} | \boldsymbol{x}_i) \boldsymbol{W}(\boldsymbol{y} | \boldsymbol{x}_j)}$$
(4)

for some $\boldsymbol{x}_i, \boldsymbol{x}_j \in \boldsymbol{\mathcal{C}}$

• Get rid of the log and replace the Plotkin step with a Lovász-like approach to lower bound

$$\min_{i \neq j} \sum_{\boldsymbol{y}} \sqrt{\boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_i) \boldsymbol{W}(\boldsymbol{y}|\boldsymbol{x}_j)}$$
(5)

• We still identify a subset \mathcal{T} but somehow use

$$d_{\min} \leq -\rho \log \left(\max_{\boldsymbol{x} \in \mathcal{T}} \frac{1}{(|\mathcal{T}| - 1)} \sum_{\boldsymbol{x}' \in \mathcal{T} \setminus \{\boldsymbol{x}\}} e^{-d(\boldsymbol{x}, \boldsymbol{x}')/\rho} \right).$$
(6)

Define

•
$$\psi_x = \sqrt{W(\cdot|x)}$$
, so that $d_{\mathrm{B}}(x, x') = -\log \psi_x^{\dagger} \psi_{x'}$.

• Similarly $\psi_{\boldsymbol{x}} = \sqrt{\boldsymbol{W}(\cdot|\boldsymbol{x})}$, so that $d_{\mathrm{B}}(\boldsymbol{x}, \boldsymbol{x}') = -\log \psi_{\boldsymbol{x}}^{\dagger} \psi_{\boldsymbol{x}'}$.

• Collections of "tilted" vectors

$$\Gamma(\rho) = \left\{ \{\tilde{\psi}_x\} : |\tilde{\psi}_x^{\dagger} \tilde{\psi}_{x'}| \le (\psi_x^{\dagger} \psi_{x'})^{1/\rho} \right\}.$$
(7)

• An extension of the Lovász theta function

$$\vartheta(\rho) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_f \max_x \log \frac{1}{|\tilde{\psi}_x^{\dagger} f|}$$

Theorem (Dalai, ISIT'2013)

$$\max_{m' \neq m} \psi_m^{\dagger} \psi_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho)} - 1}{M - 1}\right)^{\rho}$$

Define

•
$$\psi_x = \sqrt{W(\cdot|x)}$$
, so that $d_{\mathrm{B}}(x, x') = -\log \psi_x^{\dagger} \psi_{x'}$.

• Similarly $\psi_{\boldsymbol{x}} = \sqrt{\boldsymbol{W}(\cdot|\boldsymbol{x})}$, so that $d_{\mathrm{B}}(\boldsymbol{x}, \boldsymbol{x}') = -\log \psi_{\boldsymbol{x}}^{\dagger} \psi_{\boldsymbol{x}'}$.

• Collections of "tilted" vectors

$$\Gamma(\rho) = \left\{ \{ \tilde{\psi}_x \} : |\tilde{\psi}_x^{\dagger} \tilde{\psi}_{x'}| \le (\psi_x^{\dagger} \psi_{x'})^{1/\rho} \right\}.$$
(7)

• An extension of the Lovász theta function

$$\vartheta(\rho) = \min_{\{\tilde{\psi}_x\}\in\Gamma(\rho)} \min_f \max_x \log \frac{1}{|\tilde{\psi}_x^{\dagger}f|^2}$$
(8)

Theorem (Dalai, ISIT'2013)

$$\max_{m' \neq m} \psi_m^{\dagger} \psi_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho)} - 1}{M - 1}\right)^{\rho}$$

Define

•
$$\psi_x = \sqrt{W(\cdot|x)}$$
, so that $d_{\mathrm{B}}(x, x') = -\log \psi_x^{\dagger} \psi_{x'}$.

• Similarly $\psi_{\boldsymbol{x}} = \sqrt{\boldsymbol{W}(\cdot|\boldsymbol{x})}$, so that $d_{\mathrm{B}}(\boldsymbol{x}, \boldsymbol{x}') = -\log \psi_{\boldsymbol{x}}^{\dagger} \psi_{\boldsymbol{x}'}$.

• Collections of "tilted" vectors

$$\Gamma(\rho) = \left\{ \{ \tilde{\psi}_x \} : |\tilde{\psi}_x^{\dagger} \tilde{\psi}_{x'}| \le (\psi_x^{\dagger} \psi_{x'})^{1/\rho} \right\}.$$
(7)

• An extension of the Lovász theta function

$$\vartheta(\rho) = \min_{\{\tilde{\psi}_x\}\in\Gamma(\rho)} \min_{f} \max_{x} \log \frac{1}{|\tilde{\psi}_x^{\dagger}f|^2}$$
(8)

Theorem (Dalai, ISIT'2013)

$$\max_{m' \neq m} \boldsymbol{\psi}_m^{\dagger} \boldsymbol{\psi}_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho)} - 1}{M - 1}\right)^{\rho}$$

ISIT 2014

Bound on $\delta(R)$ (Lovász-like variation of Plotkin's bound)

$$\max_{m' \neq m} \boldsymbol{\psi}_m^{\dagger} \boldsymbol{\psi}_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho)} - 1}{M - 1}\right)^{\rho}$$

$$\Downarrow (n \to \infty)$$

$$\delta(R) \le \rho \vartheta(\rho)$$
 for $R > \vartheta(\rho)$

$$\Downarrow (\rho \to \infty)$$

$$\delta(R) < \infty \text{ for } R > \vartheta \qquad (\text{Lovász})$$

Next steps

- Constant (conditional) composition codes
- Identify the subset \mathcal{T}

(9)

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P
- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

$$\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\} \in \Gamma(\rho)} \min_f \sum_x P(x) \log \frac{1}{|\tilde{\psi}_x^{\dagger}f|^2}$$
(10)

ISIT 2014

Then, for codes with composition P

$$\max_{m' \neq m} \psi_m^{\dagger} \psi_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho, P)} - 1}{M - 1}\right)^{\rho}$$

Bound on $\delta(R,P)$

 $\delta(R, P) \le \rho \vartheta(\rho, P)$ for $R > \vartheta(\rho, P)$

M. Dalai

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P
- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

$$\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\}\in\Gamma(\rho)} \min_f \sum_x P(x) \log \frac{1}{|\tilde{\psi}_x^{\dagger}f|^2}$$
(10)

ISIT 2014

Then, for codes with composition P

$$\max_{m' \neq m} \psi_m^{\dagger} \psi_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho, P)} - 1}{M - 1}\right)^{\rho}$$

Bound on $\delta(R,P)$

 $\delta(R, P) \le \rho \vartheta(\rho, P)$ for $R > \vartheta(\rho, P)$

M. Dalai

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P
- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

$$\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\}\in\Gamma(\rho)} \min_f \sum_x P(x) \log \frac{1}{|\tilde{\psi}_x^{\dagger}f|^2}$$
(10)

Then, for codes with composition P

$$\max_{m' \neq m} \boldsymbol{\psi}_m^{\dagger} \boldsymbol{\psi}_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho, P)} - 1}{M - 1}\right)^{\rho}$$

Bound on $\delta(R,P)$

$$\delta(R, P) \le \rho \vartheta(\rho, P)$$
 for $R > \vartheta(\rho, P)$

First step: constant composition codes

- Let $\delta(R, P)$ the minimum distance achievable with constant composition codes with composition tending to P
- Consider the constant-composition variation of $\vartheta(\rho)$ (cf. Marton)

$$\vartheta(\rho, P) = \min_{\{\tilde{\psi}_x\}\in\Gamma(\rho)} \min_f \sum_x P(x) \log \frac{1}{|\tilde{\psi}_x^{\dagger}f|^2}$$
(10)

Then, for codes with composition P

$$\max_{m' \neq m} \boldsymbol{\psi}_m^{\dagger} \boldsymbol{\psi}_{m'} \ge \left(\frac{M e^{-n\vartheta(\rho, P)} - 1}{M - 1}\right)^{\rho}$$

Bound on $\delta(R, P)$

$$\delta(R, P) \le \rho \vartheta(\rho, P)$$
 for $R > \vartheta(\rho, P)$

M. Dalai

Elias Bound for Channels with a Zero-Error Capacity

(11)

Further extension

• For a distribution P and a $|\mathcal{X}| \times |\mathcal{X}|$ stochastic matrix $V : \mathcal{X} \to \mathcal{X}$, define

$$\vartheta(\rho, P, V) = \sum_{x} P(x)\vartheta(\rho, V(\cdot|x))$$
(12)

• If we have a set \mathcal{T} codewords \boldsymbol{x}_i with conditional composition V given a fixed sequence $\bar{\boldsymbol{x}}$, then

$$\max_{m \neq m'} \psi_{\boldsymbol{x}_m}^{\dagger} \psi_{\boldsymbol{x}_{m'}} \ge \left(\frac{|\mathcal{T}| e^{-n\vartheta(\rho, P, V)} - 1}{|\mathcal{T}| - 1} \right)^{\rho}.$$
 (13)

- We now only have to identify \bar{x} and \mathcal{T}
- We want $|\mathcal{T}| \approx e^{n(\vartheta(\rho, P, V) + \varepsilon)}$

Further extension

• For a distribution P and a $|\mathcal{X}| \times |\mathcal{X}|$ stochastic matrix $V : \mathcal{X} \to \mathcal{X}$, define

$$\vartheta(\rho, P, V) = \sum_{x} P(x)\vartheta(\rho, V(\cdot|x))$$
(12)

• If we have a set \mathcal{T} codewords \boldsymbol{x}_i with conditional composition V given a fixed sequence $\bar{\boldsymbol{x}}$, then

$$\max_{m \neq m'} \boldsymbol{\psi}_{\boldsymbol{x}_m}^{\dagger} \boldsymbol{\psi}_{\boldsymbol{x}_{m'}} \geq \left(\frac{|\mathcal{T}| e^{-n\vartheta(\rho, P, V)} - 1}{|\mathcal{T}| - 1} \right)^{\rho}.$$
 (13)

- We now only have to identify \bar{x} and \mathcal{T}
- We want $|\mathcal{T}| \approx e^{n(\vartheta(\rho, P, V) + \varepsilon)}$

Further extension

• For a distribution P and a $|\mathcal{X}| \times |\mathcal{X}|$ stochastic matrix $V : \mathcal{X} \to \mathcal{X}$, define

$$\vartheta(\rho, P, V) = \sum_{x} P(x)\vartheta(\rho, V(\cdot|x))$$
(12)

• If we have a set \mathcal{T} codewords \boldsymbol{x}_i with conditional composition V given a fixed sequence $\bar{\boldsymbol{x}}$, then

$$\max_{m \neq m'} \boldsymbol{\psi}_{\boldsymbol{x}_m}^{\dagger} \boldsymbol{\psi}_{\boldsymbol{x}_m'} \geq \left(\frac{|\mathcal{T}| e^{-n\vartheta(\rho, P, V)} - 1}{|\mathcal{T}| - 1} \right)^{\rho}.$$
 (13)

- We now only have to identify \bar{x} and \mathcal{T}
- We want $|\mathcal{T}| \approx e^{n(\vartheta(\rho, P, V) + \varepsilon)}$

Lemma (Blahut)

Given a code with $M = e^{nR}$ codewords of composition P, let V be stochastic matrix such that nP(x)V(x'|x) an integer, PV = P, and

$$R \ge I(P, V) + \vartheta(\rho, P, V) + \varepsilon.$$
(14)

Then, there is at least one sequence \bar{x} of composition P (not necessarily a codeword) such that there are at least $e^{n(\vartheta(\rho,P,V)+\varepsilon-o(1))}$ codewords with conditional composition V from \bar{x} .

Theorem (Main result)

For given R, P and $\rho \ge 0$, let V be a $|\mathcal{X}| \times |\mathcal{X}|$ stochastic matrix such that PV = P. Then

 $\delta^*(R, P) \le \rho \vartheta(\rho, P, V), \text{ for } R > I(P, V) + \vartheta(\rho, P, V).$ (15)

Lemma (Blahut)

Given a code with $M = e^{nR}$ codewords of composition P, let V be stochastic matrix such that nP(x)V(x'|x) an integer, PV = P, and

$$R \ge I(P, V) + \vartheta(\rho, P, V) + \varepsilon.$$
(14)

Then, there is at least one sequence \bar{x} of composition P (not necessarily a codeword) such that there are at least $e^{n(\vartheta(\rho,P,V)+\varepsilon-o(1))}$ codewords with conditional composition V from \bar{x} .

Theorem (Main result)

For given R, P and $\rho \ge 0$, let V be a $|\mathcal{X}| \times |\mathcal{X}|$ stochastic matrix such that PV = P. Then

 $\delta^*(R,P) \le \rho \vartheta(\rho,P,V), \text{ for } R > I(P,V) + \vartheta(\rho,P,V).$ (15)

$\operatorname{Comments}^1$

- The bound can be formulated for general (not necessarily Bhattacharyya) distances
- For squared euclidean distances, as $\rho \to \infty$ it gives back Blahut's bound
- Blahut's one includes Berlekamp's and Piret's
- Hence this bound includes all previous cases

M. Dalai

¹M. Dalai, "Elias Bound for General Distances and Stable Sets in Edge-Weighted Graphs", *submitted* - arXiv:1406.1308.

- The bound can be formulated for general (not necessarily Bhattacharyya) distances
- For squared euclidean distances, as $\rho \to \infty$ it gives back Blahut's bound
- Blahut's one includes Berlekamp's and Piret's
- Hence this bound includes all previous cases

M. Dalai

¹M. Dalai, "Elias Bound for General Distances and Stable Sets in Edge-Weighted Graphs", *submitted* - arXiv:1406.1308.

- The bound can be formulated for general (not necessarily Bhattacharyya) distances
- For squared euclidean distances, as $\rho \to \infty$ it gives back Blahut's bound
- Blahut's one includes Berlekamp's and Piret's
- Hence this bound includes all previous cases

M. Dalai

¹M. Dalai, "Elias Bound for General Distances and Stable Sets in Edge-Weighted Graphs", *submitted* - arXiv:1406.1308.

- The bound can be formulated for general (not necessarily Bhattacharyya) distances
- For squared euclidean distances, as $\rho \to \infty$ it gives back Blahut's bound
- Blahut's one includes Berlekamp's and Piret's
- Hence this bound includes all previous cases

M. Dalai

¹M. Dalai, "Elias Bound for General Distances and Stable Sets in Edge-Weighted Graphs", *submitted* - arXiv:1406.1308.