Compito 15: Vettori di variabili casuali Pdf congiunta / Funzioni di VVC / Momenti congiunti Teoria dei Segnali

Esercizio 1

- a) Dato un lancio di 2 dadi sia X_1 la variabile casuale che rappresentata il risultato del primo dado, mentre X_2 è la variabile casuale rappresentante il risultato del secondo dado. I dadi non presentano alcuna disomogeneità di massa o attrazione tra di loro, così che ciascun esito di lancio risulti equiprobabile.
 - i. Disegnare la densità di probabilità congiunta delle variabili casuali X_1 e X_2 . X_1 e X_2 risultano statisticamente indipendenti; risultano statisticamente incorrelate?
 - ii. Disegnare la densità di probabilità congiunta delle variabili casuali rappresentanti la somma $(Z_1 = X_1 + X_2)$ e la differenza ($Z_2 = X_1 X_2$) dei risultati dei 2 dadi. Z_1 e Z_2 risultano statisticamente indipendenti; risultano statisticamente incorrelate?
- b) Si consideri ora che i 2 dadi siano lievemente magnetizzati. Sperimentalmente si verifica che gli esiti (1,1) e (6,6) abbiano ciascuno probabilità 2/45 mentre gli esiti (1,6) e (6,1) abbiano ciascuno probabilità 1/90, gli altri esiti non subendo alcuna variazione rispetto al caso a). In questo caso le variabili casuali X_1 e X_2 risultano statisticamente indipendenti? Risultano statisticamente incorrelate?

Esercizio 2

Date 2 variabili casuali X e Y con pdf congiunta definita su un domino triangolare rettangolare delimitato rispettivamente dagli assi di equazioni $\alpha=0,\,\beta=1$ e $\alpha=\beta,$ di espressione $f_{XY}(\alpha,\beta)=K\cdot |\alpha-\beta|$

- a) Determinare il valore di K affinché f_{XY} sia effettivamente una funzione di densità di probabilità congiunta;
- b) Calcolare le funzioni di densità di probabilità marginale $f_X(\alpha)$ e $f_Y(\beta)$
- c) Indicare se le VC X e Y sono statisticamente indipendenti; sono statisticamente incorrelate (giustificare la risposta data)
- d) Calcolare la funzione di densità di probabilità della variabile Z = X + Y.
- e) [facoltativo] Costruire se esiste una variabile casuale W = g(X, Y) ortogonale alla variabile casuale Z.