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Abstract—In this paper, lower bounds on error probability
in coding for discrete classical and classical-quantum channels
are studied. The contribution of the paper goes in two main
directions: 1) extending classical bounds of Shannon et al. to
classical-quantum channels, and 2) proposing a new framework
for lower bounding the probability of error of channels with a
zero-error capacity in the low rate region. The relation between
these two problems is revealed by showing that Lovász’ bound
on zero-error capacity emerges as a natural consequence of the
sphere packing bound once we move to the more general context
of classical-quantum channels. A variation of Lovász’ bound is
then derived to lower bound the probability of error in the low
rate region by means of auxiliary channels. As a result of this
study, connections between the Lovász theta function, the expur-
gated bound of Gallager, the cutoff rate of a classical channel,
and the sphere packing bound for classical-quantum channels are
established.

Index Terms—Classical-quantum channels, cutoff rate, Lovász
theta function, quantum Chernoff bound, Rényi divergence, relia-
bility function, sphere packing bound.

I. INTRODUCTION

T HIS paper touches some topics in subfields of information
theory that are usually of interest to different communi-

ties. For this reason, we introduce this paper with an overview
of the different contexts.

A. Classical Context

One of the central topics in coding theory is the problem of
bounding the probability of error of optimal codes for commu-
nication over a given channel. In his 1948 landmark paper [4],
Shannon introduced the notion of channel capacity, which rep-
resents the largest rate at which information can be sent through
the channel with vanishing probability of error. This means that,
at rates strictly smaller than the capacity , communication is
possible with a probability of error that vanishes with increasing
block-length. In the following years, an important refinement of
this fundamental result was obtained in [5]–[7]. In particular, it
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was proved that the probability of error for the optimal en-
coding strategy at rates below the capacity vanishes exponen-
tially fast in the block-length, a fact that we can express as

where is the probability of error, is the block-length, and
is a function of the rate , called channel reliability,

which is positive (possibly infinite) for all rates smaller than the
capacity. While Shannon’s theorem made the evaluation of the
capacity relatively simple, determining the function soon
turned out to be a very difficult problem.
As Shannon himself first observed and studied [8], for

a whole class of channels, communication is possible at
sufficiently low but positive rates with probability of error
precisely equal to zero, a fact that is usually described by saying
that function is infinite at those rates. Shannon defined
the zero-error capacity of a channel as the supremum of
all rates at which communication is possible with probability
of error exactly equal to zero. This problem soon appeared as
one of a radically different nature from that of determining
the traditional capacity. The zero-error capacity only depends
on the confusability graph of the channel, and determining its
value is usually considered to be a problem of a combinatorial
nature rather than of a probabilistic one [9]. As a consequence,
since is precisely the smallest value of for which
is finite, it is clear that determining the precise value of
for general channels is expected to be a problem of exceptional
difficulty. The first bounds to were obtained by Shannon
himself [8]. In particular, he gave the first nontrivial upper
bound in the form , where is the zero-error ca-
pacity with feedback,1 which he was able to determine exactly
by means of a clever combinatorial approach.
In the following years, works by Fano [11], Shannon et al.

[12], [13] were devoted to the problem of bounding the function
for general discrete memoryless channels. The function

could be determined exactly for all rates larger than some crit-
ical rate , but no general solution could be found for lower
rates, something that was however surely expected in light of
the known hardness of even determining the value at which

must diverge. An important result, based on large devia-
tion techniques in probability theory, was the so-called sphere
packing upper bound, that is, the determination of a function

such that for all rates . The smallest
rate for which is finite is clearly also an upper
bound to , and it turned out, quite nicely, that
(whenever ). So, the same bound obtained by Shannon

1We avoid the subscript “0” in the feedback case since it is known that the
ordinary capacity is not improved by feedback [8], [10].
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with a combinatorial approach based on the use of feedback
could also be obtained indirectly from a bound based on a prob-
abilistic argument. We may say that upper bounds to and
upper bounds to were somehow “coherent.” There was how-
ever only a partial coherence. In fact, channels with the same
confusability graph can have different . This means that the
tightest bound to for a given channel, obtained by mini-
mizing over all channels with the same confusability graph,
could be smaller than the rate of that channel. In that case,
in a range of values of the rate , no upper bound to was
available even though this quantity was already known to be
finite.
The situation remained as such until 1979, when Lovász pub-

lished his ground-breaking paper [14]. Lovász obtained a new
upper bound to based on his theta function which, among
other things, allowed him to precisely determine the capacity
of the pentagon, the simplest graph for which Shannon was not
able to determine the capacity. Lovász’ interest for this problem,
however, came from a purely graph theoretic context, and his
approach was combinatorial in nature, apparently very different
from the probabilistic techniques previously used in channel
coding theory.
Lovász’ contribution is usually considered a clear indication

that bounding is a problem that must be attacked with tech-
niques developed under the context of combinatorics rather than
under the probabilistic one. Links between Lovász’ contribution
and classical coding theory results (see for example [15]) have
probably not been strong enough to avoid a progressive inde-
pendent development of a new research branch without further
advances in the study of error probability of optimal codes at
low rates. Lovász’ theta function was recognized as a funda-
mental quantity in combinatorial optimization due to its relevant
algebraic properties; to date, it is usually interpreted in the con-
text of semidefinite relaxation/programming and it is probably
more used in mathematics and computer science than in infor-
mation theory (see, for example, [16] for more details, or [17]
for more recent developments). As an effect of this trend, no ad-
vances in bounding for general channels with a zero-error
capacity were made after the appearance of Lovász’ work. Per-
haps Lovász’ method was so combinatorially oriented that it ap-
peared difficult to exploit it in the probabilistic context within
which bounds to were usually developed. Since 1979,
thus, contrarily to what happened in the 1960s, a “gap” exists
between bounds to and bounds to .
One of the main objectives of this paper is to show that

Lovász’ work and the sphere packing bound of Shannon,
Gallagher, and Berlekamp rely on a similar idea, which can be
described in a unified way in probabilistic terms if one moves
to the more general setting of quantum probability. The right
context is that of classical-quantum channels; for these chan-
nels, equivalent definitions of capacity, zero-error capacity, and
reliability function can be given with exact analogy with the
classical case.
In this paper, we prove the sphere packing bound for clas-

sical-quantum channels and we show that Lovász’ result
emerges naturally as a consequence of this bound. In particular,
we show that when the rate is minimized not just over
classical channels but over classical-quantum channels with

Fig. 1. Role of quantum probability in the study of the channel reliability in the
low rate region. In the classical setting, the rate at which the sphere packing
bound diverges equals the zero-error capacity with feedback (if
), a quantity originally studied with a combinatorial approach. In the quantum
context, channels exist for which equals the Lovasz’ theta function, a more
powerful upper bound on , also usually introduced in a combinatorial setting,
for which no probabilistic interpretation has been given before.

a given confusability graph, then the achieved minimum is
precisely the Lovász’ theta function. Fig. 1 gives a pictorial
representation of the resulting scenario. This shows that clas-
sical-quantum channels provide the right context for making
bounds to and bounds to coherent again at least to the
same extent as they had been in the 1960s.
In this paper, however, we also attempt to make a first step

toward a real unification of bounds to and bounds to ,
which means that for any channel one has a finite upper bound
to for each that is known to be larger than . There
are different ways of attempting such a unification. This paper
focuses on an approach inspired by a common idea in Lovász’
construction and in the expurgated lower bound to of Gal-
lager [18]. The resulting upper bound to is in many cases
not tight at even moderately high rates. It has however the nice
property of being finite over the same range of rate values for
all channels with the same confusability graph, and of giving
a powerful bound to as a consequence of bounds to .
Furthermore, this approach reveals interesting connections be-
tween the Lovász’ theta function, the cutoff rate of classical
channels, the expurgated bound of Gallager, and the rate of
classical-quantum channels. The resulting situation in the gen-
eral case is qualitatively depicted in Fig. 2. The bounds obtained
in this paper are simply sketched in order to clarify that we do
not claim any tightness. We believe however that the presented
ideas shed some light on an unexplored path that deserves fur-
ther study.
The final objective of an investigation on this topic should be

a bound, that we also symbolically show in Fig. 2, that smoothly
departs from the sphere packing bound to diverge at .
We believe any result in this direction would be fundamental
to coding theory and combinatorics. When bounding the func-
tion near the zero-error capacity, in fact, we are faced
with the problem of finding a tradeoff between probabilistic and
combinatorial methods. Bounds to for general nonsym-
metric channels usually require probabilistic methods, while ef-
fective bounds to , like Lovász’ theta function, seem to re-
quire a combinatorial approach. In this paper, we suggest the
use of quantum probability and quantum information theory,
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Fig. 2. Relation between the umbrella bounds to for classical channels
derived in this paper and other known quantities. A “desirable” upper bound
to is also shown in the figure that smoothly corrects the sphere packing
bound to meet ; this should be target of future works in this direction.

even for the classical problem, as a mean to expand the prob-
abilistic setting toward the domain of combinatorics. In this
paper, we show that by expanding the probabilistic approach
of [12] for bounding to the quantum case, we already re-
cover such a powerful combinatorial result as Lovász’ bound to
. Thus, quantum probability represents a promising approach

for finding a unified derivation of effective bounds to and
to even in the classical setting.
This point of view may be considered also in light of a trend,

which has emerged in recent years, which sees quantum prob-
ability methods used for the derivation of classical results (see,
for example, the survey [19]). From the classical point of view,
one may regard quantum probability as a purely mathematical
tool and may want to investigate this tool without any refer-
ence to any quantum theory. In this perspective, one may ask
where these benefits of quantum probability really come from,
in mathematical terms. To give a very concise partial answer
to this question, one may say that while classical probability
finds its roots in the use of distributions as vectors in the sim-
plex, which are unit norm vectors under the norm, quantum
probability hinges around the use of wave functions as vec-
tors on the unit sphere, that is unit norm vectors under the
norm (see [20] and, for example, [21] or [22] for the reasons
behind the need of using the or the norms). In coding
theory, when working in the low rate region, what moves the
problem from the probability domain into combinatorics is the
increasing importance of very small error probability events.
Optimal codewords are associated with conditional output dis-
tributions represented by almost orthogonal vectors which all
lie very close to the boundary of the simplex (actually on the
boundary in the case of zero-error codes). The use of quantum
probability may be seen as a form of relaxation of the classical
problem where the smooth unit sphere is used in place of the
probability simplex, so as to overcome the difficulties encoun-
tered when working too close to the contour.
Lovász’ own result, on the other hand, can be interpreted in

this way. As will be seen in Section III, the vectors used in
Lovász’ representations essentially play the same role of the

square roots of channel transition probabilities. The main dif-
ference is that Lovász allows for negative components in these
vectors, which have no intuitive meaning in the classical prob-
abilistic description of the problem. The true benefit of these
negative components is that, in the study of the -fold channel
extension, they allow to “generate” orthogonal codewords by
exploiting what could be called, inspired by physics, “interfer-
ence” between positive and negative components, something
which cannot be done using classical probability theory.
The idea of extending the domain in order to solve a problem

has in the end proved unavoidable in many different cases in
mathematics. Integer valued sequences, like Fibonacci’s, can
usually only be represented in closed form using irrational num-
bers; the solutions to general cubic equations, even when all of
them are real, can only be expressed by means of radicals by
resorting to the complex numbers; many integrals and series in
the real domain are much easily solved in the complex plane,
etc. We believe that this extension of the working domain will
be highly beneficial in coding theory as well.

B. Classical-Quantum Context

As already mentioned, classical-quantum channels play a
central role in this paper. A number of results in the theory of
classical communication through classical-quantum channels
have been obtained in the past years that parallel many of the
results obtained in the period 1948–1965 for classical chan-
nels (see [23] for a very comprehensive overview). As in the
classical case, we are here primarily concerned with the study
of error exponents for optimal transmission at rates below the
channel capacity. Upper bounds to the probability of error of
optimal codes for pure-state channels were obtained by Burna-
shev and Holevo [24] that are the equivalent of the so-called
random coding bound obtained by Fano [11] and Gallager
[18] and of the expurgated bound of Gallager [18] for classical
channels. The expurgated bound was then extended to general
quantum channels by Holevo [25]. The formal extension of the
random coding bound expression to mixed states is conjectured
to represent an upper bound for the general case but no proof
has been obtained yet (see [24], [25]).
A missing step in these quantum versions of the classical re-

sults is an equivalent of the sphere packing bound. This is prob-
ably due to the fact that a complete solution to the problem of
determining the asymptotic error exponents in quantum hypoth-
esis testing has been obtained only recently. In particular, the
so-called quantum Chernoff bound was obtained in [26], for the
direct part, and in [27], for the converse part (both results were
obtained in 2006, see [28] for an extensive discussion). Those
two works also essentially provided the basic tools that enabled
the solution of the so-called asymmetric problem in [28] and
[29], where the set of achievable pairs of error exponents for
the two hypotheses is determined. This result is often called
Hoeffding bound in quantum statistics. The authors in [28] at-
tribute the result for the classical case also to Blahut [30] and
Csiszár and Longo [31]. It is the author’s impression, however,
that the result was already known much earlier, at least among
information theorists at the MIT, since it is essentially used in
Fano’s 1961 book [11] (even if not explicitly stated in terms of



8030 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 12, DECEMBER 2013

hypothesis testing) and partially attributed to some 1957 unpub-
lished seminar notes by Shannon (see also [6] for an example of
Shannon’s early familiarity with the Chernoff bound). A more
explicit formulation in terms of binary hypothesis testing is con-
tained in [12] and [13] in a very general form, which already
considers the case of distributions with different supports (com-
pare with [30] and see for example [28, Sec. 5.2]) and also pro-
vides results for finite observation lengths and varying statistical
distributions (check for example [13, Th. 1, p. 524]). This is in
fact what is needed in studying error exponents for hypothesis
testing between different codewords of a code for a general dis-
crete memoryless channel.
With respect to [12], [13], the main difference in the study of

error exponents in binary hypothesis testing contained in [30]
and [31] is that these papers focus more on the role of the Kull-
back–Leibler discrimination (or relative entropy), which can be
used as a building block for the study of the whole problem in
the classical case. In [12] and [13], instead, a quantity equiv-
alent to what is now known as the Rényi divergence was used
as the building block. The two approaches are equivalent in the
classical case, and it was historically the presentation in terms
of the ubiquitous Kullback–Leibler divergence which emerged
as the preferred one as opposed to the Rényi divergence. Along
this same line, a simpler and elegant proof of the sphere packing
bound, again in terms of the Kullback–Leibler divergence, was
derived by Haroutunian [32] by comparing the channel under
study with dummy channels with smaller capacity. This proof,
which is substantially simpler than the one presented in [12],
was then popularized in [33], and became the preferred proof
for this result.
As a matter of fact, however, as pointed out in [29, Sec. 4,

Remark 1] and [28, Sec. 4.8], it turns out that the solution to
the study of error exponents in quantum hypothesis testing can
be expressed in terms of the Rényi divergence and not in terms
of the Kullback–Leibler divergence. Thus, since the sphere
packing bound is essentially based on the theory of binary
hypothesis testing, it is reasonable to expect that Haroutunian’s
approach to the sphere packing bound may fail in the quantum
case. This could be in our opinion the reason why a quantum
sphere packing bound has not been established in the literature.
In this paper, we propose a derivation of the sphere packing

bound for classical-quantum channels by following closely the
approach used in [11] and [12]. The quantum case is related to
the classical one by means of the Nussbaum–Szkoła mapping
[27], that represented the key point in proving the converse part
of the quantum Chernoff bound (see [28] for more details). This
allows us to formulate a quantum version of the Shannon–Gal-
lager–Berlekamp generalization of the Chernoff bound [12, Th.
5] on binary hypothesis testing (in the converse part). The proof
of the sphere packing bound used in [12] will then be adapted
to obtain the equivalent bound for classical-quantum channels.
This proves the power of the methods employed in [12]. Fur-
thermore, the mentioned generalization of the Chernoff bound
allows us to adapt the technique used in [13] to find an upper
bound to the reliability at , which leads to an exact ex-
pression when combined with the expurgated bound proved by
Holevo [25].

C. Paper Overview

This paper is structured as follows. In Section II, we introduce
the notation and the basic notions on classical and classical-
quantum channels, and on the main statistical tools used in this
paper. In Section III, we introduce what we call the “umbrella
bound” for classical channels in its simplest and self-contained
form. This section is entirely classical, only the bra-ket notation
for scalar products is used for convenience. The scope of this
section is to show how Lovász’ idea can be extended to bound
the reliability function at all rates larger than the Lovász
theta function. Interesting connections between the Lovász theta
function, the cutoff rate, and the expurgated bound emerge by
means of this analysis. This section represents a preview of the
more general results that will be derived in Section VIII and pre-
pares the reader for the interpretation of Lovász’ representations
as auxiliary channels. These results were first presented in [3].
We then start considering bounds for classical-quantum chan-

nels. In Section IV, we develop a fundamental bound to the
probability of error in a binary decision test between quantum
states. This bound is a quantum version of the converse part
of the Shannon–Gallager–Berlekamp generalization of the
Chernoff bound [12]. In Section V, this tool is used to prove
the sphere packing bound for classical-quantum channels. The
proof of the bound follows the approach in [12], which contains
the key idea that is also found in Lovász’ bound. Part of the
results presented in Sections IV and V were first presented in
[1]. In Section VI, we provide a detailed analysis of the analogy
between the sphere packing and Lovász’ bound. In doing so, we
generalize a result of Csiszár [34], showing that the quantum
sphere packing bound can be written in terms of an information
radius [35], which appears to be the leading theme that puts
the Lovász theta function, the cutoff rate, the rate , and the
ordinary capacity under the same light. In this section, it is
also proved that the minimum rate of all channels with a
given confusability graph is precisely the Lovász theta function
of that graph. Part of these results were first presented in [2].
In Section VII, we provide a more detailed analysis of classical
and pure-state channels, establishing a connection between the
cutoff rate of a classical channel and the rate of a pure-state
channel that could underlie the classical one. This leads as a
side result to seemingly new expressions for the cutoff rate.
In Section VIII, then, we reconsider the umbrella bound an-

ticipated in Section III, giving it a more general and gener-
ally more powerful form that allows one to bound the relia-
bility function of a classical-quantum channel in terms
of the sphere packing bound of an auxiliary classical-quantum
channel. Finally, in Section IX, we consider the special case of
channels with no zero-error capacity, for which we present the
quantum extension of some classical bounds. In particular, we
show that the zero-rate bound of [13] can be extended to clas-
sical-quantum channels by means of the results of Section IV,
thus obtaining the precise value of the reliability at .
The quantum extension of some other known classical bounds
is then briefly discussed.

II. BASIC NOTIONS AND NOTATIONS

In this section, we present the choice of notation in detail
while discussing the basic results on classical and classical-
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quantum channels, on the used divergences and on the zero-
error capacity (see [10], [23], [36]–[40] for more details).
As a general rule, we use lower case letters for unit norm vec-

tors ( etc.) and capital letters for distributions ( etc.) or
density operators ( etc.). Bold letters refer to quantities
associated with -fold tensor powers or products. For classical
discrete memoryless channels, we use the notation for
the probability of output when the input is . So, is the
output distribution induced by input . In a similar way, for a
classical-quantum channel, denotes the density operator as-
sociated with input . Finally, we use Dirac’s bra-ket notation
for inner and outer products in Hilbert spaces but we avoid the
ket notation for vectors.

A. Classical Channels

Let and be the
input and output alphabets of a discrete memoryless channel
with transition probabilities , . If

is a sequence of input symbols and corre-
spondingly is a sequence of output sym-
bols, then the probability of observing at the output of the
channel given input is

A block code with parameters and is a mapping from a set
of messages onto a set of

sequences each composed of symbols from the input al-
phabet. The rate of the code is defined as .
A decoder is a mapping from the set of length- sequences of
symbols from the output alphabet into the set of possible mes-
sages . If message is to be sent, the encoder
transmits the codeword through the channel. An output se-
quence is received by the decoder, which maps it to a message
. An error occurs if .
Let be the set of output sequences that are mapped to the

message . When message is sent, the probability of error is

The maximum error probability of the code is defined as the
largest , that is,

Let be the smallest maximum error probability
among all codes of length and rate at least . Shannon’s
theorem states that sequences of codes exists such that

as for all rates smaller than a constant
, called channel capacity, which is given by the expression

where the maximum is over all probability distributions on
the input alphabet (see [10], [33], [36] for more details on the
capacity).

For , Shannon’s theorem only asserts that
as . In the most general case,2

for a range of rates , the optimal probability of
error is known to have an exponential decrease in
, and it is thus reasonable to define the reliability function of
the channel as

(1)

The value is the so-called zero-error capacity, also intro-
duced by Shannon [8], which is defined as the highest rate at
which communication is possible with probability of error pre-
cisely equal to zero. More formally,

(2)

For , we may define the reliability function as
being infinite.3

It is known that the same function results if in (1) one
substitutes with the smallest average probability of
error defined as the minimum of
over all codes of block length and rate at least (see, for
example, [12], [18]). For almost all channels, the function
is known only in the region of high rates. The random coding
lower bound states that , where

(3)

(4)

(5)

This bound is tight in the high rate region. This is proved by
means of the sphere packing upper bound, which states that

, where

For those rates for which is achieved by a ,
we see that . It can be shown that there is a
constant , called critical rate, which is in most interesting
cases smaller than (see [12, Appendix]), such that

for all rates . So, the reliability function is
known exactly in the range .
In the low rate region, two important different cases are to

be distinguished. If there is at least one pair of inputs and
such that , then communication is pos-
sible at sufficiently low rates with probability of error exactly
equal to zero, which means that the zero-error capacity defined
in (2) is positive. Otherwise, and the probability of
error, though small, is always positive. An improvement over

2Some “pathological” channels, like the noiseless binary symmetric channel,
can have and exhibit no exponential decrease of for any
. These are not very interesting cases however.
3According to the definition of in (1), which is equivalent to the defi-

nition of given in [12], the value at can be both finite or infinite
depending on the channel. This is however only a technical detail that does not
change the behavior of at .
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the random coding bound is given by Gallager’s expurgated
bound [18], which states that where

(6)

(7)

(8)

In the low rate region, the known upper bounds differ substan-
tially depending on whether the channel has a zero-error ca-
pacity or not. The function goes to infinity for rates
smaller than the quantity

(9)

which is in the general case larger than , even in cases where
. No general improvement has been obtained in this low

rate region over the sphere packing bound in the general case
of channels with a zero-error capacity. For channels with no
zero-error capacity, instead, a major improvement was obtained
in [12] and [13], where it is proved that the expurgated bound
is tight at and that it is possible to upper bound by
the so-called straight line bound, which is a segment connecting
the plot of at to the function tangentially
to the latter. Furthermore, for the specific case of the binary
symmetric channel, much more powerful bounds are available
[42], [43].

B. Classical-Quantum Channels

Consider a classical-quantum channel with input alphabet
and associated density operators , ,

in a finite dimensional Hilbert space4 . The -fold product
channel acts in the tensor product space of copies
of . To a sequence is associated the
signal state . A block code with
codewords is a mapping from a set of messages
into a set of codewords , as in the classical case.
The rate of the code is again .
A quantum decision scheme for such a code is a so-called

POVM (see for example [39]), that is, a collection of posi-
tive operators5 such that , where
is the identity operator. The probability that message is de-
coded when message is transmitted is .
The probability of error after sending message is

We then define , , and precisely as in the
classical case.

4The can thus be represented as positive semidefinite Hermitian matrices
with unit trace.
5The operators can thus be represented as positive semidefinite matrices.

The notation simply means that is positive semidefinite.
Note that, by construction, all the eigenvalues of each operator must be in
the interval .

A pure-state channel is one for which all density operators
have rank 1, in which case we write . If, on the
other hand, all density operators commute, then they are all
simultaneously diagonal in some basis. In this case, it is easily
proved that the optimal measurements are also diagonal in the
same basis and, thus, the classical-quantum channel reduces to a
classical one. Each classical channel can then be thought of as a
classical-quantum one with diagonal states , the distribution

being the diagonal of .
Bounds to the reliability function of classical-quantum chan-

nels were first investigated by Burnashev and Holevo [24] and
by Holevo [25]. The formal quantum analog of the random
coding and of the expurgated exponent expressions can be
written as in (3)–(4) and (6)–(7), respectively where, in this
case,

and

Operational meaning to these quantities has been given in [24]
and [25]. In particular, the random coding bound and the expur-
gated bound were proved for pure-state channels in [24], and the
proof of the expurgated bound was then extended to mixed-state
channels in [25]. However, no extension of the random coding
bound to mixed-state channels has been obtained yet. To the best
of author’s knowledge, the best currently available lower bound
to was obtained in [44].

C. Zero-Error Capacity

Both for the classical and for the classical-quantum cases, we
can define the zero-error capacity of the channel according
to (2). In the classical case, if a code satisfies , then
for each pair of different codewords the output distribu-
tions and must have disjoint supports. This implies
that, for at least one index , the two codewords contain in the
th position two symbols and that are not confusable,
which means that and have disjoint supports. For
a given channel, then, it is useful to define a confusability graph
whose vertices are the elements of and whose edges are

the elements such that and are confusable.
It is then easily seen that only depends on the confusability
graph . Furthermore, for any graph , we can always find a
channel with confusability graph . Thus, we may equivalently
speak of the zero-error capacity of a channel or of the capacity

of the graph , and we will use those two notions inter-
changeably through the paper.
An identical discussion holds for classical-quantum channels

(See [45] for a more detailed discussion. For recent results on
zero-error communication via general quantum channels, see
[46] and references therein). In fact, if a code satisfies
, then for each we must have and

. This is possible if and only if the signals
and are orthogonal, that is . Using the
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property that , we
then have

This implies that for at least one value of
, which means that that and are not confusable. We
see then that there is no difference with respect to the classical
case: the zero error capacity only depends on the confusability
graph. Given a graph , we can interpret the capacity of the
graph as either the zero error capacity of a classical or
of a classical-quantum channel with that confusability graph.
Finding the zero-error capacity remains an unsolved problem

(see [9] for a detailed discussion). As mentioned before, a first
upper bound to was obtained by Shannon by means of an
argument based on feedback. He could prove that the zero-error
capacity, when feedback is available, is given by the expression

whenever . The expression above is precisely the value
at which the sphere packing bound diverges (whether

or not). The best bound is then obtained by using the channel
(with the given confusability graph) which minimizes the above
value.
A major breakthrough was obtained by Lovász in terms of his

theta function [14]. He could prove that is upper bounded by
the quantity defined as6

where the outer minimum is over all sets of unit-norm vectors in
any Hilbert space such that and are orthogonal if symbols
and cannot be confused, the inner minimum is over all unit

norm vectors , and the maximum is over all input symbols. See
also [15] and [47] for interesting comments on Lovász’ result.
Shortly afterward, Haemers [48], [49] obtained another inter-

esting upper bound to , which he proved to be strictly better
than in some cases. The Haemers bound asserts that is
upper bounded by the rank of any matrix with el-
ements and if and are noncon-
fusable inputs. This bound is in many cases looser than Lovász’
one, but Haemers proved it to be tighter for the graph which is
the complement of the so-called Schläfli graph.
Recently, an extension of the Lovász theta function for the

quantum communication problem has been derived in [46]
which is based on algebraic properties satisfied by the Lovász
theta function. There, the authors propose an extension for gen-
eral quantum channels based on what they call noncommutative
graphs. In this paper, however, we always consider classical
confusability graphs, and the interest is in the connection be-
tween bounds to and bounds to . Further work would
be needed to understand if there is a connection between the
results derived here and the results of [46].

6We use a logarithmic version of the original theta function as defined by
Lovász, so as to make comparisons with rates simpler.

D. Distances and Divergences

In this paper, a fundamental role is played by statistical mea-
sures of dissimilarity between probability distributions and be-
tween density operators. This section defines the used notation
and recalls the properties of those measures that will be needed
in the rest of the paper.
In classical binary hypothesis testing between two probability

distributions and on an alphabet , a fundamental role is
played by the function defined by

and extended to by defining

The minimum value of in the interval is of im-
portance for the study of symmetric binary hypothesis testing,
and it is convenient to introduce theChernoff distance
between the two probability distributions and , which is de-
fined by

It will also be useful later to discuss the relation between the
Chernoff distance and other distance measures. Of particular
importance is the Batthacharyya distance, defined as

It is known (see, for example, [12]) that the function is
a nonpositive convex function of and, from this, the following
inequalities are deduced:

(10)

Examples are easily found showing that both equalities above
are possible.
Another quantity7 which is related (actually equivalent) to

and which will be useful in Section VI is the Rényi
divergence of order defined as

(11)

(12)

When the divergence tends to the Kull-
back–Leibler divergence defined as [10]

7Different authors seem to adopt different definitions and notations for the
Rényi divergence, see [34], [38]. We adopt a notation similar to that used in
[12] and in [34], which, although it is not particularly coherent, it is useful for
the purpose of this paper and for comparison with the literature.
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We now introduce the corresponding quantities for the
quantum case, that is, when two density operators and are
to be distinguished in place of the two distributions and .
The function is defined by

(13)

and

(14)
The Chernoff and the Bhattacharrya distances and

between the two density operators and are then
defined as in the classical case by

and

and they are again related by the inequalities

In the quantum case, however, another important measure of
the difference between two quantum states is the so-called fi-
delity between the two states, which is given by the expression8

. Here, it will be useful for us to adopt a logarithmic
measure and define9

It is known that , is related to and
by the following inequalities:

Both the conditions and
are possible for properly chosen density operators

and . Finally, the Rényi divergence of order can be defined
as

(15)

III. PREVIEW: AN “UMBRELLA” BOUND

In this section, we present an upper bound to for clas-
sical channels that can be interpreted as an extension of Lovász’
work in the direction of giving at least a crude upper bound
to for those rates that Lovász’ own bound proves to be

8We use here the usual notation .
9Usually the quantity is called Bures distance. We use

the notation , with for fidelity, to avoid ambiguities with the Bhattacharyya
distance.

strictly larger than the zero-error capacity. However, the intent
is to obtain Lovász’ bound as a consequence of an upper bound
on and not vice versa. The obtained bound on is
loose at high rates, but it has two important merits. First, it
makes immediately clear how Lovász’ idea can be extended to
find an upper bound to that will give as a di-
rect consequence. Second, it reveals an important analogy be-
tween the Lovász theta function and the cutoff rate. We will in
fact introduce a function that varies from the cutoff rate of
the channel, when , to the Lovász theta function, when

. The idea is to keep Lovász’ result in mind as a target
but building it as the limit of a smoother construction. This con-
struction is related to that of Gallager’s expurgated lower bound
to , but it is used precisely in the opposite direction. We
believe that these analogies could shed new light on the under-
standing of the topic and deserve further study.

A. Bhattacharyya Distances and Scalar Products

In deriving the desired bound, we will start our interpretation
of classical-quantum channels as auxiliary mathematical tools
for the study of classical channels. Contrarily to what may be
considered the most traditional approach, however, in this sec-
tion we do not interpret our channel’s transition probabilities as
the eigenvalues of positive semidefinite commuting operators.
We consider instead the transition probabilities as the squared
absolute values of the components of some wave functions, and
it is thus more instructive to initially consider only pure-state
channels. In this direction, we also need to recall briefly some
important connections between the reliability function
and the Bhattacharyya distance between codewords. This con-
nection is of great importance since the Bhattacharyya distance
between distributions is related to a scalar product between unit
norm vectors in a Hilbert space. It is this property that makes
an adaptation of Lovász’ approach to study the function
possible.
For a generic input symbol , consider the unit norm vector

(16)

of the square roots of the conditional probabilities of the output
symbols given input . We call this the state vector of input
symbol , in obvious analogywith the input signals of pure-state
classical-quantum channels. We will also use the simplified no-
tation . Consider then the memoryless -fold ex-
tension of our classical channel, that is, for an input sequence

, consider the square root of the condi-
tional probability of a sequence

If all sequences are listed in lexicographical order, we can
express all the square roots of their conditional probabilities as
the components of the vector , which satisfies

(17)
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where is the Kronecker product. We call this vector the
state vector of the input sequence , again in analogy with
classical-quantum channels. Let for simplicity be the state
vector of the codeword ; then we can represent our code

by means of its associated state vectors
. Since all square roots are taken positive,

note that our classical channel has a positive zero-error capacity
if and only if there are at least two state vectors , such
that . This implies that codes can be built such
that for some , , that is, the two codewords
and cannot be confused at the output.
However, the scalar product plays a more general

role, since it is related to the so-called Bhattacharyya distance
between the two codewords and . In particular, in a binary
hypothesis testing between codewords and , an extension
of the Chernoff Bound allows to assert that the minimum error
probability vanishes exponentially fast in the block length
and that [13]

Using (10), we then see that

We add as a comment that equality holds on the left for the class
of channels, introduced in [13], called pairwise reversible chan-
nels. These channels are such that for any pair of inputs , the
quantity is minimized by , which implies
that for any pair of inputs , .
For any channel, for a given code, the probability of error
is lower bounded by the probability of error in each binary hy-
pothesis test between two codewords. Hence, we find that

(18)

and, for pairwise reversible channels,

(19)

Hence, it is possible to upper bound by lower bounding
the quantity

Lovász’ work aims at finding a value as small as possible
that allows us to conclude that, for a set of
codewords, cannot be zero, and thus at least two codewords
are confusable. Here, instead, we want something more, that is,
to find a lower bound on for each code with rate , so as
to deduce an upper bound on for all .

B. Umbrella Bound

Consider the scalar products between the channel state vec-
tors . For a fixed , consider then a set of
“tilted” state vectors, that is, unit norm vectors
in any Hilbert space such that . We
call such a set of vectors an orthonormal representation of

degree of our channel, and we call the set of all possible
such representations,

Observe that is nonempty since the original vectors sat-
isfy the constraints. The value of an orthonormal representation
is the quantity

where the minimum is over all unit norm vectors . The optimal
choice of the vector is called, following Lovász, the handle of
the representation. We call it to point out that this vector plays
essentially the same role as the auxiliary output distribution
used in the sphere packing bound of [12] (with their notation), a
role that will be played by an auxiliary density operator later
on in Section V.
Call now the minimum value over all representations of

degree ,

The function allows us to find an upper bound to
that we call the umbrella bound. Later in Section VIII, we will
interpret this bound from a different perspective, and we will
introduce an evolution based on the sphere packing bound. We
have the following result.
Theorem 1: For any code of block-length with code-

words and any , we have

Corollary 1: For the reliability function of a general DMC,
we have the bound

(20)

If the channel is pairwise reversible, we can strengthen the
bound to

(21)

Proof: Note that, for an optimal representation of degree
with handle , we have , . Set now

and for an input sequence call,
in analogy with (17), . Observe that
we have

(22)

(23)

This is the key step which is central to both Lovász’ approach
and to the sphere packing bound: the construction of an auxiliary
state which is “close” to all possible states associated with any
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sequence. In this case, the states are close in terms of scalar
product, while in the sphere packing bound they will be close
in terms of the more general Rényi divergence. The basic idea,
however, is not different.
Let us first check how Lovász’ bound is obtained. Lovász’ ap-

proach is to bound the number of codewords with orthogonal
state vectors, using the property that if form an
orthonormal set, then

Hence, if , there are at least two nonorthogonal
vectors in the set, say . But this implies that

. Hence, if , no
zero-error code can exist. We still have the free choice of , and
it is obvious that larger values of can only give better results.
It is then preferable to simply work in the limit of and
thus build the representation under the only constraint that

whenever . This gives precisely
Lovász’ result.
Now, instead of bounding under the hypothesis of zero-

error communication, we want to bound the probability of error
for a given . Considering the tilted state vectors of the
code, we can rewrite (23) as

The second expression above has the benefit of easily al-
lowing to average it over different codewords. So, we can
average this expression over all and, defining the matrix

, we get

Since is a unit norm vector, this implies that the matrix
has at least one eigenvalue larger than or equal to . This
in turn implies that also the matrix has itself an eigenvalue
larger than or equal to , that is

It is known that for a given matrix with elements , the
following inequality holds:

Using this inequality with we get

We then deduce

where the last step is due to the Jensen inequality, since .
Extracting the sum from this inequality, we obtain the inequality
stated in the theorem.
To prove the corollary, simply note that

The bound is trivial if . If , we deduce again
Lovász’ result that there are two nonorthogonal codewords. But
now we also have some further information; for , the
second term in the parenthesis decreases exponentially faster
than the first, which leads us to the conclusion that

The bounds in terms of are then obtained by simply taking
the limit and using the bounds (18) and (19).
Remark 1: In passing from the theorem to the corollary, we

have essentially substituted the maximum Bhattacharyya dis-
tance between codewords for the largest average distance from
one codeword to the remaining ones. The reason for doing this
is that we are unable to bound efficiently in terms of the
sum of the distances, although intuition suggests that it should
be possible to do it, in consideration of the behavior of
near the critical rate. This is related to the tightness of the union
bound; it is our firm belief that this step is crucial and that im-
provements in this sense could give important enhancements in
the resulting bound.
A comment about the computation of this bound is in order.

There is no essential difference between the evaluation of
and the evaluation of . The optimal representation , for
any fixed , can be obtained by solving a semidefinite optimiza-
tion problem. If we consider the Gram
matrix
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we note that finding the optimal representation amounts to
solving the problem

The solution to this problem is , and both the
optimal representation vectors and the handle can be
obtained by means of the spectral decomposition of the optimal
found.

C. Relation to Known Classical Quantities

We now study the behavior of for different values of
. A first important comment is about the result obtained for

; the value is simply the cutoff rate of the channel.
Indeed, for , we can without loss of generality use the
obvious representation , since any different optimal
representation will simply be a rotation of this (or an equivalent
description in a space with a different dimension). In this case,
all the components of all the vectors are nonnegative, and
this easily implies that the optimal can as well be chosen with
nonnegative components, since changing a supposedly negative
component of to its absolute value can only improve the result.
Thus, can be written as the square root of a probability density
on and we have

where the minimum is now over all probability distributions
on the output alphabet . As observed by Csiszár [34, Proposi-
tion 1], with , this expression equals the cutoff rate10

of the channel defined as

The identity will be discussed again later in light of
the new interpretation that we will give of after studying
the sphere packing bound. We will see that it represents a nice
connection between a classical channel and a pure-state clas-
sical-quantum channel possibly underlying the classical one.
Another important characteristic of the function is ob-

served in the limit . In the limit, the only constraint on
representations is that whenever
. Hence, when , the set of possible representations is
precisely the same considered by Lovász [14], and we thus have

10We use the notation for the cutoff rate, instead of the more common ,
for notational needs that will become clear in Section VI.

as . So, the value of moves from the
cutoff rate to the Lovász theta function when varies from 1 to
. This clearly implies that our bound to is finite for all

and thus Lovász’ bound

In order to understand what happens for values of between
1 and , it is instructive to consider first a class of channels in-
troduced by Jelinek [50] and later also studied by Blahut [51].
These are channels for which the matrix with

element is positive semidefi-
nite for all . It was proved by Jelinek that, for these chan-
nels, the expurgated bound of Gallager [18] is invariant over
-fold extensions of the channel, that is, it has the same form
when computed on a single channel use or on multiple channel
uses (this is not true in general). Thus, if the conjecture made in
[12, p. 77], that the expurgated bound computed on the -fold
channel is tight asymptotically when , is true, then for
these channels the reliability would be known exactly since it
would equal the expurgated bound for the single use channel.
It is also known that for these channels, the inputs can be par-
titioned in subsets such that all pairs of symbols from the same
subset are confusable and no pair of symbols from different sub-
sets is confusable. The zero error capacity in this case is simply
the logarithm of the number of such subsets. For these channels,
since the matrix is positive semidefinite, there exists a set of
vectors such that , that
is, for all , representations of degree exist that satisfy all
the constraints with equality. In this case, the equivalence with
the cutoff rate that we have seen for can be in a sense
extended to other values. We will in fact see in Section VII
that we can write

(24)

(25)

(26)

(27)

where, in the last step, we have used (8). Hence, under such
circumstances, we find that , where is
the value of the coefficient used in the expurgated bound as de-
fined in (7)–(8). Note that, for each , the expurgated bound is
a straight line which intercepts the axis and at the points

and , respectively, which equal and .
Hence, our bound is obtained by drawing the curve parameter-
ized as in the plane. This automati-
cally implies that we obtain the bound
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which gives the precise value of the zero-error capacity in this
case (which is however trivial) and, if , the bound

If the channel is pairwise reversible, this can then be improved
to , which is obviously tight.
For general channels with a nontrivial zero-error capacity,

like for example any channel whose confusability graph is a
pentagon, what happens is that the matrix is in general posi-
tive semidefinite only for values of in a range , and then it
becomes not positive semidefinite for . This implies that
for , representations that satisfy all the constraints with
equality do not exist in general. In this case, the two expressions
in (25) and (26) are no longer equal and in general they could
both differ from . If all the values are nonnegative,
however, we will prove by means of Theorem 9 in Section VII
that the expression in (25) equals . In this case, we see
the interesting difference between and . The two
quantities follow respectively (25) and (26). When ,

tends to , an upper bound to . The value in-
stead is known to converge to the independence number of the
confusability graph of the channel [52], a lower bound to .
More generally, if , since is given by
(25), it is an upper bound to (26) and thus to . It can
then also be proved that (25) is multiplicative, in this case, over
the -fold tensor power of the representation . This im-
plies that, for all , is an upper bound to the (normalized)
expurgated bound computed for the -fold memory-
less extension of the channel. That is, generalizes in the
sense that, in the same way as

also

The discussion of this point with generality requires some tech-
nicalities about the function that would bring us too far and
will be presented in a future work.
It is worth pointing out that, for some channels, the optimal

representation may even stay fixed for larger than some given
finite value , and is thus constant for (in
this case, the bounds are useless for ). This happens
for example for the noisy typewriter channel with five inputs
and crossover probability . In this case ;
as shown in Fig. 3, for we have
while, for , .

Fig. 3. Plot of and for the noisy typewriter channel with five
inputs and crossover probability .

D. Relation to Classical-Quantum Channels

In deriving the umbrella bound in this section, we have
mentioned classical-quantum channels but we have not explic-
itly used any of their properties. The derived bound could be
interpreted as a simple variation of Lovász’ argument toward
bounding . We decided in any case to use a notation
that suggests an interpretation in terms of classical-quantum
channels because, as we will see later in the paper, the bound
derived here is a special case of a more general bound that can
be derived by properly applying the sphere packing bound for
classical-quantum channels.
In particular, while the construction of the representation
appears in this section as a purely mathematical trick to

bound by means of a geometrical representation of the
channel, it will be seen from the results of Section VIII that in
the context of classical-quantum channels this procedure is a
natural way to bound by comparing the original channel
with an auxiliary one. In the classical case, Lovász’ result came
completely unexpected since it involves the unconventional
idea of using vectors with negative components to play the
same role of . When formulated in the classical-quantum
setting, however, this approach becomes completely transparent
and does not require pushing imagination out of the original
domain. We may say that classical-quantum channels are to
classical channels as complex numbers are to real numbers. In
this analogy, Lovász’ theta function is like Cardano’s solution
for cubics.

IV. QUANTUM BINARY HYPOTHESIS TESTING

In this section, we consider the problem of binary hypothesis
testing between quantum states. In particular, we will prove a
quantum extension of the converse part of the Shannon–Gal-
lager–Berlekamp generalized Chernoff bound [12, Th. 5]. This
is a fundamental tool in bounding the probability of error for
codes over classical-quantum channels and it will thus play a
central role in Sections V and IX for the proof of the sphere
packing bound and the zero-rate bound.
Let and be two density operators in a Hilbert space .

We are interested in the problem of discriminating between the
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hypotheses that a given system is in state or . We suppose
here that the two density operators have nondisjoint supports,
for otherwise the problem is trivial. Of particular importance in
quantum statistics is the case where independent copies of the
system are available, which means that we actually have to de-
cide between the -fold tensor powers and of and
. The decision has to be taken based on the result of a mea-

surement that can be identified with a pair of positive operators
associated with and , respectively.

The probability of error when the state is or are, re-
spectively,

We are interested in the asymptotic behavior of the probability
of error as goes to infinity. The following result was recently
derived in [26] and [27] (see also [28]).
Theorem 2 (Quantum Chernoff Bound): Let be density

operators with Chernoff distance and let and be
positive real numbers. For any , let

where the infimum is over all measurements. Then,

(28)

Note that the coefficients have no effect on the asymp-
totic exponential behavior of the error probability. With fixed

, the optimal projectors are such that the error probabili-
ties and have the same exponential decay in .
In some occasions, and in particular for the purpose of this

paper, it is important to characterize the performance of optimal
tests when different exponential behavior for the two error prob-
abilities are needed. The following result has been recently ob-
tained as a generalization of the previous theorem [28], [29].
Theorem 3: Let be density operators with nondisjoint

supports and let . Let be defined as

and if . Let be the set of all sequences
of operators such that

Then,

This generalization of the Chernoff bound, however, is not
yet sufficient for the purpose of this paper. In channel coding
problems, in fact, what is usually of interest is the more general
problem of distinguishing between two states and that are

represented by tensor products of nonidentical density operators
such as

In this case, it is clear that the probability of error depends on
the sequences and in such a way that an
asymptotic result of the form of Theorems 2 and 3 is not to be
hoped in general. For example, after the obvious redefinition of

in Theorem 2, the limit on the left-hand side of (28) may
even not exist. For this reason, it is useful to establish a more
general result than Theorems 2 and 3 which is stated directly
in terms of two general operators, that in our case are to be
interpreted as the operators and above. This is precisely
what is done in [12, Th. 5] for the classical case and we aim
here at deriving at least the corresponding converse part of that
result for the quantum case.
Theorem 4: Let and be density operators with nondis-

joint supports, let be a measurement operator for the binary
hypothesis test between and and let the probabilities of
error be defined as

Let as defined in (13)–(14). Then, for any
, either

or

Proof: This theorem is essentially the combination of the
main idea introduced in [27] for proving the converse part of the
quantumChernoff bound and of [12, Th. 5], the classical version
of this same theorem. Since some intermediate steps of those
proofs are needed, we provide the details here for the reader’s
convenience.
Following [28], let the spectral decomposition of and be

respectively

where and are orthonormal bases. First observe that,
from the Quantum Neyman–Pearson Lemma ([53], [54]), it suf-
fices to consider orthogonal projectors . So, we have

. Symmetrically, we have that
. So we have
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Thus, for any positive , we have

(29)

where the second-to-last inequality is motivated by the fact that
for any two complex numbers we have

.
Now, following [27], consider the two probability distribu-

tions defined by the Nussbaum–Szkoła mapping

(30)

These two probability distributions are both strictly positive for
at least one pair of values, since we assumed to have
nondisjoint supports. Furthermore, they have the nice property
that

so that

Define11

(31)

and observe that

(32)

(33)

where the subscript means that the expected values are with
respect to the probability distribution . If one defines the set

(34)

then, by Chebyshev’s inequality,

(35)

11Note that and if and have the same support.

It is easily checked, using the definitions (31) and (34), that for
each the distribution satisfies

(36)

(37)

Hence, in , is bounded by the minimum of the two
expressions on the right-hand side of (36) and (37). If we call
the coefficient of in (36) and the coefficient of

in (37), using (35) we obtain

Now note that the last expression, by the definition of and
in (30), exactly equals the sum in (29). So, with the selected

values of and we have . Hence,
either or , concluding the proof.

For the special case where and , the
bounds on and derived in Theorem 4 can be simplified
in light of the observation that

With some algebra, using the convexity of and its re-
lation with , it is then possible to show that Theorem
4 implies the converse part of Theorem 3.

V. SPHERE PACKING BOUND FOR CLASSICAL-QUANTUM
CHANNELS

In this section, the sphere packing bound for general clas-
sical-quantum channels is proved. We will follow closely the
proof given in [12, Sec. IV] for the classical case. It is the au-
thor’s belief that the proof of the sphere packing bound used in
[12] is not really widely known, especially within the quantum
information theory community, because, as explained in the in-
troduction, the simpler approach used in [32] has become much
more popular.12 A detailed analysis of that proof, however, is
useful for the understanding of the analogy between the sphere
packing bound and Lovász’ bound that will be discussed in
Section VI. Furthermore, some intermediate steps in the proof
are clearly to be adjusted from the classical case to the quantum
case, and this does not always come as a trivial task. Hence,
it is both useful and necessary to go through the whole proof
used in [12]. To avoid repetitions, we present the proof directly

12Viterbi and Omura [37] define “an intellectual tour-de-force,” even if char-
acterized by “flavor, style, elegance,” the proof of the sphere packing bound of
[12] and Gallager himself defines it as “quite complicated” [55] and “tedious
and subtle to derive” [36]. See Appendix B for some historical comments on
the proof of the theorem in the classical case.
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speaking in terms of classical-quantum channels, taking advan-
tage of the weaker results that we are pursuing here13 with re-
spect to [12, Th. 5] to overcome some technical difficulties that
arise in this more general context.
Theorem 5 (Sphere Packing Bound): Let be the

input signal states of a classical-quantum channel and let
be its reliability function. Then, for all positive rates and all
positive ,

where is defined by the relations

(38)

(39)

(40)

Remark 2: The role of the arbitrarily small constant is only
important for the single value of the rate where the
sphere packing bound goes to infinity.

Proof: The key point is the idea first used (in a published
work) by Fano [11] of bounding the probability of error for at
least one codeword by studying a binary hypothesis testing
problem between and a dummy state . Roughly speaking,
we will show that there exists one and a density operator
such that
1) the probability under state of the outcome as-
sociated with the decision for message , call it

, is “small”;
2) the state is only distinguishable from “to a certain
degree” in a binary detection test.

Using Theorem 4, this will imply that the probability
cannot be too high. The whole proof is devoted to the con-
struction of such a state , which has to be chosen properly
depending on the code. We are now ready to start the detailed
proof.
We first simplify the problem using a very well-known ob-

servation, that is, the fact that for the study of we can
only consider the case of constant composition codes. It is well
known that every code with rate and block length contains
a constant composition subcode of rate , where

goes to zero when goes to infinity (see [33], [37], [56]).
This is due to the fact that the number of different compositions
of codewords of length is only polynomial in while the code
size is exponential. Hence, we will focus on this constant com-
position subcode and consider it as our initial code. Let thus our
code have codewords with the same composition , that is,
is the distribution on such that symbol occurs

times in each codeword.
Let be a density operator in . We will first apply The-

orem 4 using one of the states as state and as state .

13In [12], bounds for fixed and are obtained. Here, we are only interested
instead in determining and we can then work in the asymptotic regime

.

This will result in a tradeoff between the rate of the code and
the probability of error , where both quantities will be pa-
rameterized in the parameter , a higher rate being allowed if a
larger is tolerated and vice versa. This tradeoff depends
of course on the composition and on the density operator .
We will later pick properly so as to obtain the best possible
bound for a given valid for all compositions .
For any consider a binary hypothesis test be-

tween and .We assume that their supports are not disjoint
(we will later show, after (50) below, that such a choice of is
possible) and define the quantity

Applying Theorem 4 with , , and ,
we find that for each in , either

or

Note now that for all .
Furthermore, since , for at least one value of
we have . Choosing this particular
, we thus obtain from the above two equations that either

(41)

or

(42)
In these equations, we begin to see the aimed tradeoff be-

tween the rate and the probability of error. It is implicit here in
the definition of that both equations depend on and .
Since has been fixed, we can drop its explicit indication and
use simply in place of from this point on. We will now let

denote the right-hand side of (42), that is

This expression allows us to write in (41) in terms of
so that, taking the logarithm in (41), our condi-

tions can be rewritten as either

or
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At this point, we exploit the fact that we are considering a
fixed composition code. Since wewant our result to depend only
on the composition and not on the particular sequence , we
choose so that the function also only depends on the
composition . We thus choose to be the -fold tensor power
of a state in , that is . With this choice, in fact,
we easily check that, if ,

It is useful to recall that since we assumed the supports of
and to be nondisjoint, the supports of and must be
nondisjoint if , and thus all terms in the sum are well
defined. Note that we also have

With the same procedure used to obtain (33) using the Nuss-
baum–Szkoła mapping (85), we see that for fixed and

, is a variance of a finite random variable and it
is thus nonnegative and bounded by a constant for all . This
also implies that is bounded by a constant.
The essential point here is that the contribution of and

in our bounds will grow linearly in , while the con-
tribution of will only grow with . Hence, the terms
involving in the above equations will not have any ef-
fect on the first order exponent of the bounds. A formaliza-
tion of this fact, however, is tricky. In [12], the effect of
in the classical case is dealt with by exploiting the fact that

is a variance and proving that, uniformly over and

, , where is the smallest

nonzero transition probability of the channel. This allows the
authors to obtain a bound valid for finite . In our case, this pro-
cedure appears to be more complicated. If is studied in
the quantum domain of operators and , then is
not a variance, and thus a different approach must be studied;
if is studied by means of the Nussbaum–Szkoła map-
ping, then in (33) both and vary when varies, and thus
there is no such to be used. For this reason, we need to
take a different approach and we content ourselves with finding
a bound on using the asymptotic regime .
Simplifying again the notation in light of the previous obser-

vations, let us write for . Using the
obtained expression for , our conditions are either

(43)

or

(44)

Now, given a rate , we want to bound for all codes
with rate at least . We can fix first the composition of the code,
bound the probability of error, and then find the best possible
composition. Since we can choose and , for a given and
, wewill choose them so that the first inequality is not satisfied,

which will imply that the second one is, thus bounding .
The point here is that we are free to choose and , but

we then need to optimize the composition in order to have
a bound valid for all codes. This direct approach, even in the
classical case, turns out to be very complicated (see [11, Secs.
9.3 and 9.4, pp. 188–303] for a detailed and however instructive
analysis). The authors in [12] thus proceed in a more concise
way by stating the resulting optimal and as a function of
and then proving that this choice leads to the desired bound.
Here, we will follow this approach showing that the same rea-
soning can be applied also to the case of quantum channels. It is
worth noticing that the price for using the concise approach of
[12] is that, contrarily to the approach in [11], it does not allow
us to derive tight bounds for constant composition codes with
nonoptimal composition .
It is important to point out that it is not possible to simply con-

vert the quantum problem to the classical one using the Nuss-
baum–Szkoła mapping (30) directly on the states and and
then using the construction of [12, eqs. (4.18)–(4.20)] on the
obtained classical distributions. In fact, in (30), even if one of
the two states is kept fixed and only the other one varies, both
distributions vary. Thus, even if is kept fixed, the effect of
varying for the different values of would not be compat-
ible with the fact that in [12, eq. (4.20)] a fixed (in their no-
tation) has to be used which cannot depend on . Fortunately,
it is instead possible to exactly replicate the steps used in [12]
by correctly reinterpreting the construction of and in the
quantum setting.
For any in the interval , define

(45)

Let then be the distribution that minimizes the expression

(46)

which surely admits a minimum in the simplex of probability
distributions. Finally, define

(47)

(48)
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As observed by Holevo14 [25, eq. (38)], the distribution
that achieves the minimum in (46) satisfies the conditions

(49)

Furthermore, (49) is satisfied with equality for those with
, as can be verified by multiplying it by and

summing over . Then, we define

(50)

Since we can choose and freely, we will now tie the operator
to the choice of , using for . We only have to keep in

mind that and are computed by holding fixed. The
distribution will instead be used later. Note further that we
fulfill the requirement that and have nondisjoint supports,
since the left-hand side in (49) must be positive for all .
As in [12, eqs (4.21)–(4.22)], we see that, using in place

of in the definition of , we get

Using (49), we then see that

(51)

(52)

(53)

with equality if . Here, we have used (48), the defini-
tions (40) and (39), and the fact that minimizes (46). Thus,
with the choice of , (43) and (44) can be rewritten as
(for each ) either

(54)

or

(55)

where

(56)

Now, for a fixed , we can choose and then use the two con-
ditions. Dealing with these equations for a fixed code is more
complicated in our case than in [12] due to the fact that we
have not been able to bound uniformly the second derivatives

for . Thus, we have to depart from [12].

14The variable in [25] corresponds to our , that we call here in
accordance with the consolidated classical notation.

Instead of considering a fixed code of block length , consider
sequences of codes of increasing block-length. From the def-
inition of , there exists a sequence of codes of block-
lengths with rates
such that , and with probabilities of error

such that

Each code of the sequence will in general have a different com-
position15 . Since the compositions are in a compact set,
there exists a subsequence of codes such that converges to,
say, . Thus, we can directly assume this subsequence is our
own sequence, remove the double subscript , and safely as-
sume that , and as

.
Observe that, since is a nonpositive convex func-

tion of for all , we have [12, Fig. 6]

which implies that is a nonnegative quan-
tity. Then, using a procedure similar to that used in [12, pp.
100–102], it is proved in Appendix A that is a
continuous function of in the interval . Thus, for
the rate of the code with block-length , we can only have
three possible cases:
1) ;
2) ;
3) for some in .
For each , one of the three possible cases above is satisfied and
at least one16 of the cases is then satisfied for infinitely many
values of .
Suppose thus that case 1 above is satisfied infinitely often.

Then, for any fixed we have
infinitely often. We can focus on the subsequence of codes with
this property and use it as our sequence, so that

for all . For these codes, since condition (54) is not satis-
fied, then (55) must be satisfied. Since is fixed, we
can make so that the last two terms on the right-hand
side of (55) vanish. In the limit, since is nonneg-
ative, we get

(57)

(58)

for all . Letting then we find, using (40), that
. Thus, surely proving the

theorem in this case.

15With some abuse of notation, we now use where is an index for the
sequence and obviously does not have anything to do with the of .
16For some channels at certain rates, there could be more than one case which

is satisfied infinitely often, depending on how ismade to converge to . This
happens for example for those channels with whenever . Note
that this does not impact the correctness of the proof.
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Suppose now that case 2 above is satisfied infinitely often.
Then, for any fixed we have in-
finitely often. We can focus on the subsequence of codes
with this property and use it as our sequence, so that

for all . As , since is
fixed and , we see from (56) that,

(59)

Since , the inequality leads then,
in the limit , to

Now, by the fact that is convex and nonpositive for all
, it is possible to observe that ,

which implies that . Thus, for all
,

where, in the last step, we have used (53). Calling now
, we find that for all

Hence, for any , we find

This means that is unbounded for any , which
obviously implies that for all positive ,
proving the theorem in this case.
Suppose finally that case 3 is satisfied infinitely often. Thus,

for infinitely many , there is a such that
. Since the values are in the interval ,

there must exist an accumulating point for the in the closed
interval . We will first assume that such an accumulating
point exists satisfying . A subsequence of codes
then exists with the tending to . Let this subsequence be
our new sequence. For these codes, since condition (54) is not
satisfied for , then (55) must be satisfied with .
We can first substitute with in (55). Letting
then , we find that and the last two terms on
the right-hand side of vanish, since is bounded
for sufficiently close to . Hence, we obtain in the
limit

If the only accumulating point for the is or ,
the above procedure cannot be applied since we cannot get rid
of the last two terms in (55) by letting , because we
have not bounded uniformly over , and it
may well be that is unbounded as approaches
0 or 1. These cases, however, can be handled with the same
procedure used for cases 1 and 2 above. Assume that case 3 is
satisfied infinitely oftenwith the only accumulating points
or for the . Consider again the appropriate subsequence
of codes as our sequence. Fix any . For large enough,
there is no in the closed interval which satisfies

. Hence, for all sufficiently large, one of the two
following conditions must be satisfied:

1′) ;
2′) .

One of the two conditions must then be satisfied infinitely often.
If condition 1′ is satisfied infinitely often, we can use the same
procedure used for condition 1, with a fixed , to
obtain

Since is arbitrary, we can let and then also let ,
deducing again . If condition 2′ is satisfied infinitely
often, we can repeat the procedure used for case 2, with a fixed

, to obtain

and then

Letting then we prove again that is un-
bounded for any . This concludes the proof of the theorem.

In the high rate region, the obtained expression for the upper
bound to the reliability function coincides with the random
coding expression which is respectively proved and conjectured
to represent a lower bound to the reliability of pure-state and
mixed-state channels. Thus, the sphere packing bound is proved
to be tight in the high rate region for pure-state channels and
we may as well conjecture that it is tight in the general case.
As in the classical case, however, the sphere packing bound

is provably not tight in the low rate region. For channels with no
zero-error capacity, it is possible to obtain tighter bounds by ex-
tending some classical bounds to the classical-quantum setting.
These channels are considered in Section IX. For channels with
a zero-error capacity, instead, contrarily to the classical case, the
sphere packing bound has in the classical-quantum case some
important properties that relates it to the Lovász theta function.
The next section gives a min-max characterization of the func-
tion which clarifies this relation. For this purpose, it is
convenient now to use the Rényi divergence in place of

.
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VI. INFORMATION RADII, ZERO-ERROR CAPACITY, AND
THE LOVÁSZ THETA FUNCTION

It is known [33] that the capacity of a classical channel
can be written as an information radius in terms of the Kull-
back–Leibler divergence according to the expression

(60)

where the minimum is over all distributions on the output
alphabet . As made clear by Csiszár [34], a similar expression
holds for what has sometimes been called generalized capacity
or generalized cutoff rate17 (see [34] for a detailed discussion).
The function equals the upper envelope of all the lines

, and it is useful to define the quantity

(61)

which is the value at which each of these lines meets the
axis. As explicitly pointed out in [34, Proposition 1], (60) can be
generalized using the Rényi divergence defined in (12) to show
that

(62)

It is important to remark that, in the classical case, this property
of the function was already observed in [12, eq. (4.23)]
even if stated in different terms, and it is essentially this property
that is used in the proof of the sphere-packing bound. Many re-
lated min-max characterizations of , which give a more
complete picture, were given in [30].
Using the known properties of the Rényi divergence (see

[34]), we find that when the above expression (with
) gives the already mentioned expression for the capacity

(60), while for we obtain

which is the dual formulation of (9).
As already observed in [9, eqs. (1) and (2)], it is evident that

there is an interesting similarity between the min-max expres-
sion for the ordinary capacity (and of in general) and the
definition of the Lovász theta function. In this section, we show
that this similarity is not a simple coincidence. By extending re-
lation (62) to general classical-quantum channels, we show that
Lovász’ bound to emerges naturally, in that context, as a con-
sequence of the bound .
Theorem 6: For a classical-quantum channel with states
, , and , the rate defined in (61) satisfies

where the minimum is over all density operators .

17Since we also consider the zero-error capacity of channels in this paper,
we prefer to avoid any reference to generalized capacities in the sense of [34].
Instead, we prefer to adopt the notation of Savage [57, eq. (15)]. In light of
Arikan’s results [41], this may also be more appropriate than the notation in
[58, eq. (5)].)

Proof: Setting , we can write

and, defining according to (45) , we
can write

(63)

where is the Schatten -norm. From the Hölder inequality
we know that, for any positive operators and , we have

with equality if and only if for some scalar co-
efficient . Thus, we can write

where runs over positive operators in the unit ball in the
-norm. Using this expression for the Schatten norm,

we obtain

In the last expression, the minimum and the maximum are both
taken over convex sets and the objective function is linear both
in and . Thus, we can interchange the order of maximization
and minimization to get

Now, we note that the maximum over can always be
achieved by a positive operator, since all the are positive
operators. Thus, we can change the dummy variable with

, where is now a positive operator constrained
to satisfy , that is, it is a density operator. Using ,
we get

where now runs over all density operators.
If all operators commute, which means that the channel

is classical, then the optimal is diagonal in the same basis
where the are, and we thus recover Csiszár’s expression for
the classical case. Furthermore, for (that is, ) we
obtain the expression of the capacity as an information radius
already established for classical-quantum channels [59]. When
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(that is, ) then, we obtain an alternative expres-
sion for the so-called quantum cut-off rate [60].
The most important case in our context, however, is the case

when , that is, , for which we obtain

Let be the projector onto the support of . We first point
out that, by letting in (63), we can write

(64)

(65)

We will not use this expression for now. We only point out that
we will use this expression in the next section for the particular
case of pure-state channels. Furthermore, the above expression
shows that finding for a given channel is a so-called eigen-
value problem, a well-known special case of linear matrix in-
equality problems, which can be efficiently solved by numerical
methods [61]. If the states commute, the channel is classical
and this problem is already known to reduce to a linear program-
ming one.
Here, however, we proceed by using expressions that make

more evident the relation with the Lovász’ theta function.
Taking the limit (that is, ) in Theorem 6 and
using definition (15) we obtain

(66)

where the minimum is again over all density operators .
Note that the argument of the min-max in (66) coincides with

according to the definition of introduced
in [62]. The analogy with the Lovász theta function becomes
evident if we consider the particular case of pure-state channels.
If a channel has pure states , the set is a
valid representation of the confusability graph of the channel in
Lovász’ sense. On the other hand, any representation in Lovász’
sense can be interpreted as a pure-state channel. Consider for a
moment the search for the optimum in (66) when restricted
to rank-one operators, that is . We see that in this
case we can write and, so, we obtain
precisely the value . When searching over all possible
we thus have

(67)

Hence, we see that Lovász’ bound can be de-
duced as a consequence of the inequality .
Now, as in the classical case, different classical-quantum

channels share the same confusability graph and thus have the
same zero-error capacity . Hence, the best upper bound that
we can obtain for is not in general obtained using the rate

of the original channel but the rate of some auxiliary
channel. It is then preferable to focus on confusability graphs.
For a given graph , we can then consider as a representation
of the graph any set of states with if are

not connected in . The role of the value is then played by the
rate associated with the states , that we may denote
as . We can then define, in analogy with the theta
function, the quantity

where runs over the sets of operators such that
if symbols and cannot be confused and runs over the
sets of projectors with that same property. Then, we have the
bound . We will later show that, in fact, , that
is, when the rate is minimized over all channels compatible
with the confusability graph, we obtain precisely the Lovász
theta function. In order to add some insight to this equivalence,
however, we first give a self-contained proof of the inequality

which does not involve the sphere packing bound and
is obtained by “generalizing” Lovász’ approach.
Theorem 7: For any graph , we have

Proof: The fact that is obvious, since Lovász’ is
obtained by restricting the minimization in the definition of
to pure states and “handle” . The inequality

derives from the sphere packing bound, but we prove
it here adapting Lovász’ argument to the more general situation
where general projector operators are used for the representation
in place of the 1-D vectors, and a general density operator is used
as the handle.
Let be a set of projectors for which achieves .

To a sequence of symbols , associate the
operator (projector) . Consider then
a set of nonconfusable codewords of length , ,
and their associated projectors . Then, for
, we have

since, for at least one value of , because
codewords are not confusable. Hence, since the states

are orthogonal projectors, we have

where is the identity operator. Consider now the state
, where achieves for the representation . Note

that, for each , we have
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Hence, we have

Thus, we deduce that . This implies that the rate of
any zero-error code is not larger than , proving that
.
The following result is due to Schrijver [63].
Theorem 8: For any graph

Proof: Since we already know that , we only need
to prove the inequality . The proof is based on an ex-
tension of [14, Lemma 4] and on [14, Th. 5].
Let be an optimal representation of projectors for the

graph with handle . Let be the complementary18 graph of
and let be a representation of projectors for . For any

pair of inputs we have

which means that the set

is a set of orthogonal projectors. Then, for any density operator
, we have

If we maximize the last term above over rank-one represen-
tations of and rank one operators ,
we obtain

where the maximum is over all rank-one representations
of , and unit norm vectors . From [14, Th. 5], how-

ever, the right-hand side of the last equation is precisely (with
our logarithmic version of ).
Theorem 8 conclusively shows that the sphere packing

bound, when applied to classical-quantum channels, gives
precisely Lovász’ bound to . It also shows that pure-state
channels suffice for this purpose and that, for at least one
optimal channel, the minimizing in (66) can be taken to have

18Symbols are connected in if and only if they are not connected in
.

rank 1. That is, for some optimal pure-state channel, equality
holds in (67). It is worth pointing out that this is not true in
general. For some pure-state channels, the optimal in (66)
has rank larger than 1, and thus strict inequality holds in (67).

VII. CLASSICAL CHANNELS AND PURE-STATE CHANNELS

It is useful to separately consider some properties of the
sphere packing bound when computed for classical and for
classical-quantum channels. Classical channels can always
be described as classical-quantum channels with commuting
states , and the sphere packing bound for these channels is
precisely the same as the usual one [12]. So, there is no need
to discuss this type of channels in general, and the aim of this
section is instead to show that there is an interesting relation
between a classical channel and a properly chosen pure-state
channel. In order to make this relation clear, we first study
the particular form of the sphere packing bound for pure-state
channels. Note that, for these channels, the bound is known to
be tight at high rates in light of the random coding bound [24].
For a channel with pure states , we simply note

that we have and, hence, the function
can be written in a simplified way. Let

be the mixed state generated by the distribution over the input
states. Then, we can write

where the s are the eigenvalues of . For these chan-
nels, the expressions for already introduced in the previous
section reduce to

(68)

and

(69)

(70)

We note that if the state vectors are constructed from the
transition probabilities of a classical channel as done in
Section III-A according to (16), then the expression in (70) is
very similar to what we called in Section III-C. The only
difference is that we are now using a general density operator
here, while we used a rank one operator there.

For a general set of vectors , what happens is that if for
the optimizing in (68) the eigenvalue has multi-
plicity one, then the optimal density operator in (70) always
has rank 1. If the eigenvalue has multiplicity larger than 1, in-
stead, then the optimal can have rank larger than 1. We next
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show that for a pure-state channel with states constructed
from a classical channel according to (16), there is always an
optimal of rank 1, and the value always equals the value

of the original classical channel. Since we already ob-
served in Section III-C that is the cutoff rate of the classical
channel, we deduce the interesting identity between the cutoff
rate of a classical channel and the rate of a pure-state clas-
sical-quantum channel defined by means of (16). We actually
prove a more general result, which will also be useful in proving
a statement that we made in Section III-C about the so-called
nonnegative channels.
Theorem 9: If the vectors of a pure-state channel satisfy

, then we have

Furthermore, equals the value in Lovász’ sense,
that is, the optimal in (70) can be chosen to have rank 1.

Proof: We start with the expression

Define a diagonal matrix with the distribution on its diag-
onal, and a matrix with the vectors in its columns. Observe
that

so that

where the maximum is over all unit norm vectors in , and
we set . Since the matrix has
nonnegative entries
, it is not difficult to see that the maximum can always be at-
tained by a vector with nonnegative components. We can then
write , where is a distribution on . So,

(71)

The sum in the last expression is a concave function of for
fixed and vice versa. In fact, the generic term of the sum can
be written as

To prove concavity in , for example, it suffices to note that
and that, for two distributions and , and

, we have

by the Cauchy–Schwartz inequality. Thus, it is not possible here
to exchange the maximum and the minimum, as we did in the
previous expressions for , without further considerations. We
proceed in a less conventional way by directly proving the op-
timality of the pair of distributions and both equal to

First note that the sum in the last expression is a convex func-
tion of , since it is a quadratic form with nonnegative defi-
nite kernel matrix. This implies that can be determined by
applying the usual Kuhn–Tucker conditions, which, after some
calculations (see also [50]), lead to

(72)
with equality if .
Now, in order to prove that solves the min-max

problem of (71), consider the conditions for optimality of
given a fixed . Since, as already observed, the function to max-
imize is concave, we can apply the usual Kuhn–Tucker condi-
tions which lead, after some calculations, to the conclusion that
is optimal for a given if and only if

(73)

for all , with equality if . Note that the inequality is
surely strictly satisfied if , which implies that the con-
dition is always satisfied for all such that , and also
that, for such , the optimal has . Also,
is optimal only if , for otherwise the associated con-
dition is not met. Hence, for a given , the optimal satisfies

if and only if . Now we check if is
optimal for the maximization by substituting for in the con-
ditions of optimality. The condition for those with
(and thus ) becomes

(74)

while the condition for those with (and thus
) is

(75)

Comparing with (72), we thus see that is optimal if
, since all the conditions of (74) are satisfied with equality

for all such that (and thus ), while the
conditions in (75) are always trivially satisfied. Thus, is
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optimal for . This automatically implies that
is optimal, since we have

Thus, for the choice we have the optimal and
thus

as was to be proven.
We only need now to prove that equals the value of the

representation in Lovász’ sense, which means that the op-
timal in (70) can be chosen to have rank 1, or, in other words,
that there exists a unit norm vector satisfying

In order to do this, consider the conditions expressed in (72),
which are satisfied for the optimal achieving . Note that
the right-hand side of (72) is precisely the value and it
can be written as . Hence, if we define

the conditions of (72) can be written as

This implies that satisfies

as desired.
Remark 3: The condition , is by no

means necessary. If a vector is substituted with , the
density matrix will not change, while some scalar products

will become negative. However, note that all the signs
of the scalar products with or and

will change.

Corollary 2: The cutoff rate of a classical channel with tran-
sition probabilities equals the rate of any classical-
quantum pure-state channel with states such that

In particular, we have the following expression for the cutoff
rate:

Remark 4: Note that the original classical channel can be ob-
tained from a pure-state channel defined by (16) if a separable
orthogonal measurement is used. Hence, any such pure-state
channel can be interpreted as an underlying channel upon which
the classical one is built. It is worth comparing this result with
the known properties of the cutoff rate in the contexts of se-
quential decoding [41], [57] and list decoding [64]. We have
not yet studied this analogy, but we believe it deserves further
consideration.
We close this section with a bound on the possible values

taken by for pure-state channels, that will also be useful
in the next section. Since is finite and nonincreasing for
all , it would be interesting to evaluate , since
this represents the largest finite value of the function .
Unfortunately, it is not easy in general to find this precise value.
For the purpose of this paper, however, the following upper
bound will be useful.
Theorem 10: For any pure-state channel, we have

Proof: Let be the optimal in (68). Then, we have

For each and each , we have

since minimizes . Hence,

Remark 5: The bound is tight, in the sense that
is possible. For example, if the optimal in (68)

is such that has multiplicity one, and if the value
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is attained19 as , then by inspection of the
proof we notice that . Note also that this bound
does not imply , due to the arbitrarily small but
positive constant which appears in the statement of Theorem
5 (see also footnote 3).

VIII. SPHERE-PACKED UMBRELLA BOUND

In this section, we consider again the umbrella bound of
Section III and we extend it to a more general bound by means
of the sphere packing bound. While the original idea was to
bound the performance of a classical channel by means of aux-
iliary representations, that were in the end auxiliary pure-state
classical-quantum channels, here we expand it to obtain an
umbrella bound for a general classical-quantum channel by
means of an auxiliary general classical-quantum channel.
Given a classical-quantum channel with density operators
, , and given a fixed , consider an auxiliary

classical-quantum channel with states such that

where . We call such a channel an admissible aux-
iliary channel of degree and we call the set of all such
channels. For a fixed auxiliary channel , let be its relia-
bility function and let be the associated sphere packing
exponent.
To any sequence of input symbols ,

we can associate a signal state for
the original channel and a signal state

for the auxiliary channel. Thus, to a set of codewords
, with a simplified notation, we can associate states
for the original channel and states for

the auxiliary channel. We then bound the probability of error
of the original channel by bounding of the aux-

iliary channel .
Consider the auxiliary channel codeword states. It was proved

by Holevo [25] that for such a set of states, there exists a mea-
surement with probability of error for the th message bounded
as

This implies that

Hence, asymptotically in the block length , we find that

19This is not obvious in general. For general channels, the function
is not necessarily concave, and this implies that may in principle be
obtained for a finite . We conjecture, however, that is concave for pure
state channels.

and hence

Considering the original states , we deduce that,

(76)
We now anticipate some notions that will be discussed in

more detail in Section IX for expository convenience, since they
play a central role also in other low rate bounds to . The
left-hand side of (76) is the minimum fidelity distance between
codewords of (87) below. Borrowing
from Section IX the definition of the Chernoff distance between
codewords (81), the inequality from
(88), and Theorem 12, we deduce

(77)

For particular types of channels, this last step can be tightened.
For example, if the original channel is a pairwise reversible
classical channel, then we can use the relation

, which holds in that case, and thus state

(78)

In general, however, it would be better to change the definition
of in order to take into account these types of particular
cases. We have not yet investigated the topic in this direction
and we thus only focus on the general case.
Clearly, for any rate , the parameter and the auxiliary

channel can be chosen optimally. We thus have the following
result.
Theorem 11: The reliability function is upper bounded

by the function , where

(79)

A precise evaluation of this bound is not trivial. For a given
, one should find the optimal pair and this is in gen-

eral a complex task, which gives rise to interesting optimization
problems. A complete treatment of this topic is still under in-
vestigation and will hopefully be detailed in a future work. It
is important, however, to consider here the particular case of
the bound used for classical channels by means of pure-state
channels, in order to complete our interpretation of the umbrella
bound given in Section III as a special case of this one.
Suppose the states commute, which means that the

original channel is a classical one, and assume that we re-
strict the set of possible admissible auxiliary channels to the
pure-state ones. First observe that for commuting states
we have while, for pure states

, we have . Hence,
for a classical channel, the restriction of to pure state
channels precisely corresponds to the set of admissible rep-
resentations of degree in the sense of Section III-B. Then,
for a fixed and for a fixed auxiliary channel, it is interesting
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to study the values of for which the bound is finite. This
happens for rates larger than the rate where
diverges and, from our previous analysis, we have

We see that this is almost the same expression of the value of
the representation , and it is precisely the same value
if , as proved in Theorem 9.
It would be interesting to evaluate but, as men-

tioned in the previous section, this is not easy in general. By
Theorem 10, however, we know that . This
implies that for , the right-hand side of (77) is not
larger than . Exploiting the fact that is surely non-
increasing, we then deduce the bound

which is to be compared with (20) with in place of .
Considering the expression (70) for , and optimizing over
the pure-state auxiliary channels, we thus see that the umbrella
bound derived in Section III is included as a particular case of
the more general one derived in this section. In general, how-
ever, for a given representation, can be strictly smaller
than . Furthermore, the function has in many cases
slope in and thus the bound of (79), for a given ,
is in those cases not optimized for the value of which leads
to , but for a larger one, which leads to ,
whenever possible. This implies that the bound derived here is
in general strictly better than that derived in Section III.
We close this section by pointing out that, as a consequence of

Theorem 8, the smallest value of for which is finite
is precisely the Lovász theta function.

IX. EXTENSION OF LOW RATE BOUNDS TO
CLASSICAL-QUANTUM CHANNELS

As anticipated in the previous sections, the sphere packing
bound is in general not tight at low rates. For example, it is in-
finite over a nonempty range of positive small rates for all non-
trivial pure-state channels, even if there is no pair of orthogonal
input states, which implies that the zero-error capacity of the
channel is zero. In this section, we deal precisely with chan-
nels with no zero-error capacity. For these channels, in the clas-
sical case some bounds that greatly improve the sphere packing
bound were derived. The main objective of this section is to
consider some possible extensions of these results to the clas-
sical-quantum case.
A first interesting result that extends a low rate bound from

the classical to the classical-quantum setting was already ob-
tained in [23] for the case of pure-state channels. There, the
authors proved the equivalent of the zero-rate upper bound to

derived in [13] for the case of pure-state channels with no
zero-error capacity, thus proving that even in this case the expur-
gated bound is tight at zero rate. For general classical-quantum
channels, a similar result was attempted in [25], but the obtained

upper bound to at zero-rate does not coincide with the
limiting value of the expurgated bound in this case.
In this section, we first present the extension of the zero-rate

upper bound of [13], [65] to the case of mixed-state channels,
which leads to the determination of the exact value of the reli-
ability function at zero-rate. Then, we also discuss some other
bounds. In particular, we consider the application of Blahut’s
bound [51] to the case of pure- and mixed-state channels.
A recurring theme in the study of the reliability of classical

and classical-quantum channels is the fact that, at low rates, the
probability of error is dominated by the worst pair of codewords
in the code. At high rates, it is important to bound the probability
of a message to be incorrectly decoded due to a bulk of com-
petitors. The auxiliary state used in the proof of the sphere
packing bound serves precisely to this scope and represents this
bulk of competitors. At low rates, instead, there are essentially
only few competitors (we may conjecture just one) which are
responsible for almost all the probability of error. Thus, in the
low rate region, it is important to bound the probability of error
in a binary decision between any pair of codewords. For this
reason, we need to specialize Theorem 4 to the case of binary
hypothesis testing between two codewords, so as to obtain the
quantum generalization of [13, Th. 1].
In the context of Theorem 4, thus, let and
, call for simplicity and let min-

imize . Then, we have , and thus either

or

The key point is now to show that the second derivative term
is unimportant for large , so that the exponential behavior is
determined by . If is the joint composition
between codewords and ,we find

where for ease of notation,

By definition of , we can thus introduce the Chernoff distance
between the two messages and (this corresponds to the
discrepancy in [13])

(80)

(81)

We then have the following generalization of [13, Th. 1].
Theorem 12: If and are two codewords in a code

of block length for a classical-quantum channel with symbol
states , , then

(82)
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or

(83)

where is the smallest nonzero eigenvalue of all the states
, .
Proof: The proof is essentially the same as in [13, Th. 1],

with the only difference that we have to bound for
computed between density operators rather than proba-

bility distributions. Using the spectral decomposition of the den-
sity operators

where and are orthonormal bases, we can how-
ever use again the Nussbaum–Szkoła mapping to define two
probability distributions and as

(84)

(85)

so that

The proof in [13, Th. 1] can then be applied using our distri-
butions and for and there, and
noticing that in [13, eq. (1.10)] we can use in our case the bound

By considering all possible pairs of codewords, it is clear that
the optimal exponential behavior of can be bounded in
terms of the minimum discrepancy between codewords of an
optimal code with codewords and block length . Theorem
12 implies that the results on the zero-rate reliability of [13,
Th. 3–4] apply straightforwardly to the classical-quantum case.
These results are related to an upper bound to the reliability
function in the low rate region derived by Blahut [51] and to
upper bounds derived for the classical-quantum case in [24] and
[25]. A clarification of these relations is the objective of the next
part of this section.
In view of that, it is useful to remind here the relation between

the Chernoff, the Bhattacharyya, and the fidelity distances. If we
define the Bhattacharyya and the fidelity distances between two
messages and as

(86)

(87)

then we see that the following inequalities hold:

(88)

It is useful to investigate conditions under which
can be expressed exactly in terms of or .
One case is that of pairwise reversible channels. We observe
that in the classical-quantum context, the condition for pairwise
reversibility holds for example for all pure-state channels, for
which is constant for all and . Another important
case is the case where codewords and have a symmetric
joint composition, that is for all

, for in that case the function is symmetric around
, due to the fact that . In those cases,

the Chernoff distance can be replaced by the closed
form expression of . In the general case, however, for
a single pair of codewords, it is not possible to use
in place of for lower bounding the probability of
error, and it can be proved that in some cases

.
We are now in a position to consider the low rate upper

bounds to the reliability function derived in [13] and in [51] dis-
cussing their applicability for classical and classical-quantum
channels. For classical channels, a low rate improvement of the
sphere packing bound for channels with no zero error capacity
was obtained in [13]. This bound is based on two important
results:
1) A zero rate bound [13, Th 4], first derived in [65, Ch. 2],
which asserts that, for a discrete memoryless channel with
transition probabilities ,

(89)
The right-hand side of the above equation is also the value
of the expurgated bound of Gallager as . This im-
plies that the bound is tight, and that the expression deter-
mines the reliability function at zero rate.

2) A straight line bound [13, Th. 6], attributed to Shannon and
Gallager in Berlekamp’s thesis [65, p. 6] which asserts that,
given an upper bound to the reliability function
which is tighter than at low rates, it is possible to
combine ad to obtain an improved upper
bound on by drawing a straight line from any two
points on the curves and .

Combining these two results, the authors obtain an upper bound
to which is strictly better than the sphere packing bound
for low rates and is tight at rate .
Of the above two results, we only consider here the exten-

sion of the zero-rate bound, a possible generalization of the
straight line bound being still under investigation at the mo-
ment. For quantum channels, a zero rate bound has been ob-
tained by Burnashev and Holevo [24] for the case of pure-state
channels which essentially parallel the classical result. That is,
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they proved that in the case of pure-states , if
there is no pair of orthogonal states, then

(90)

As for the classical case, this bound coincides with a lower
bound given by the expurgated bound as , thus providing
the exact expression.
For general mixed-state channels, the reliability at zero rate

was considered by Holevo [25] who obtained the bound

(91)

Note that, in light of the now clear parallel role of the Rényi
divergence in the classical and quantum case, the expression
of the lower bound in (91) is the generalization of the right-
hand side of (89), while the upper bound is in the general case a
larger quantity. Thus, we are inclined to believe that the correct
expression for should be the first one. This is actually
the case, as stated in the following theorem.
Theorem 13: For a general classical-quantum channel with

states , , no two of which are orthogonal, the reliability
function at zero rate is given by the expression

(92)

Proof: This theorem is the quantum equivalent of [13, Th.
4], and it is a direct consequence of Theorem 12. It can be no-
ticed, in fact, that the proof of [13, Th. 4] holds exactly un-
changed in this new setting since it only depends on [13, Th.
1] and on the definition and additivity property of the function

. We do not go through the proof here since it is very long
and it does not need any change.
It is interesting to briefly discuss the Holevo upper bound for

for mixed-state channels, that is, the right-hand side of
(91). First observe that, in the classical case, that is when all
states commute, the expression reduces to

(93)
This bound (in the classical case) is much easier to prove than
Berlekamp’s bound (89). First note that Berlekamp’s bound is
relatively simple to prove for the case of pairwise reversible
channels, exploiting the fact that in
that case (see [13, Cor. 3.1]). Essentially, the same proof al-
lows to derive the bound (90), since
also holds for pure-state channels as discussed in the previous
section. For general classical channels, the same proof can be
used by bounding with as explained

before, and this leads to the bound (93). For general classical-
quantum channels, finally, Holevo’s bound on the right-hand
side of (91) is obtained with the same procedure by using the
bound .
The proof of Berlekamp’s bound (89) and (92) for general

classical and classical-quantum channels, respectively, is in-
stead more complicated (see the proof of [13, Th. 4]) and it
relies heavily on the fact that the number of codewords
can be made as large as desired. Roughly speaking, it is a
combinatorial result on possible joint compositions of pairs of
codewords extracted from arbitrarily large sets. The interested
reader can check that the truly remarkable result in the proof
of [13, Th. 4] is a characterization of the joint compositions
between codewords, which implies that the asymmetries of the
functions can be somehow “averaged” due to the many
possible pairs of codewords that can be compared (see [13, eqs.
(1.40)–(1.45), (1.54)] and observe that only the additivity of

and the fact that are used).
We can now consider the low rate upper bound to the reli-

ability function derived in [51]. Blahut considers the class of
nonnegative definite channels mentioned in Section III-C. For
these channels, Blahut [51, Th. 8] shows that it is possible to
relate the smallest Bhattacharyya distance between codewords
of a constant composition code for a given positive rate to a
function which he defines as

where

and is the mutual information between a variable with
marginal and another variable with conditional distribution
given that the first variable is . Blahut then derives an upper

bound [51, Sec. VI] on by bounding the probability of
error between codewords using the Bhattacharyya distance. For
pairwise exchangeable channels, the bound states that

. For general nonpairwise exchangeable channels, in this
author’s opinion,20 the bound would need to be modified in the
form .
Bringing this into the classical-quantum setting, redefining

using the expression in place of
Blahut’s bound can

be applied for example to all nonnegative definite pure-state
channels and it can be applied to all nonnegative channels with
the correcting coefficient 2 in the form . If
the coefficient 2 makes the bound much looser than the straight
line bound in the classical case, in the quantum case it results
in the best-known upper bound to , since no straight line
bound has been obtained yet.

20The application of the theorem to general channels is, in this author’s
opinion, not correct. This point would bring us too far, and it will thus be
discussed in a separate note.
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Another important observation is that, for the particular case
of binary symmetric channels, the Chernoff distance between
messages is proportional to the Hamming distance
between the codewords. Thus, for a given , any upper bound
on the minimum Hamming distance between codewords is also
an upper bound on the minimum Chernoff distance between
messages, which easily implies a bound on . In partic-
ular, the reliability function can be bounded using the JPL
bound [42]. The resulting bounds are tighter than in the
classical case as well as in the classical-quantum case.
Finally, it is worth pointing out that, as opposed to the zero-

rate bound, deriving a quantum version of the straight line bound
seems to be a more complicated task, if even possible. The
straight line bound in the classical case, indeed, is proved by
exploiting the fact that a decoding decision can always be im-
plemented in two steps by splitting the output sequence in two
blocks, applying a list decoding on the first block and a low
rate decoding on the second one. In the case of quantum chan-
nels, this procedure does not apply directly since the optimal
measurements are in general entangled and are not equivalent
to separable measurements.

X. CONCLUSION AND FUTURE WORK

In this paper, we have considered the problem of lower
bounding the probability of error in coding for discrete mem-
oryless classical and classical-quantum channels. A sphere
packing bound has been derived for the latter, and it was shown
that this bound provides the natural framework for including
Lovász’ work into the picture of probabilistic bounds to the
reliability function. An umbrella bound has been derived as a
first example of use of the sphere packing bound applied to aux-
iliary channels for bounding the reliability of channels with a
zero-error capacity. Additional side results have been obtained
showing that interesting connections exist between classical
channels and pure-state channels. We believe that there is much
room for improvements, over the bounds derived in this paper,
by means of known techniques already used with success in
related works. There are (at least) three important questions
that should be addressed by next works in this direction. The
first is the possibility of finding a smooth connection between
the sphere packing bound and , as indicated in Fig. 2. The
second is the possibility of including Haemers’ bound to
into the same picture, in order to obtain a bound to that is
more general than both Lovász’ and Haemers’ ones. The third
important question to address is whether it is possible to extend
the straight line bound to classical-quantum channels. This
would give very good bounds to in the low rate region
for all channels without a zero-error capacity.

APPENDIX A
CONTINUITY OF

For any , and probability distribution on , let

(94)

and call the convex set of all such operators when varies
over the simplex of probability distributions. Recall that

(95)

(96)

Let then be a choice of that maximizes ,
so that

Such a maximizing must exist, since is
continuous on the compact set of probability distributions, but
need not be unique.
Note now that the state as defined in (50) is given by

Our aim is to prove that the function

is continuous in . We do this by proving that the density op-
erator is a continuous function of , from which the
continuity of follows, implying the continuity of
and its first two derivatives, by means of the Nussbaum–Szkoła
mapping and the relations (32) and (33) when applied to states
and .
First observe that, for fixed , both and

are continuous functions of . Assume that is
not continuous at the point , where . By
definition, there exists a and a sequence such that

but . By picking an
appropriate subsequence if necessary, assume without loss of
generality that so that

for some vanishing operators
and . Note that and, by construction,

. Since is the choice of
that minimizes the function over the convex do-

main , since this function is strictly convex in that domain,
and since is bounded away from by a
constant , there exists a fixed positive such that

But then,
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where are vanishing positive functions of
. This implies that is not optimal for large enough, con-
trarily to the assumed hypothesis.

APPENDIX B
HISTORICAL NOTE

Romanticism aside, however, the history of sci-
ence—like Orwell’s Big Brother state—usually writes
and rewrites history to remove inconvenient facts, mis-
takes, and idiosyncrasies, leaving only a rationalized path
to our present knowledge, or what historians sometimes
call “whig” history. In so doing, it not only distorts the
actual course of historical events but also gives a mis-
leadingly simplistic picture of the richness of scientific
activity…

– Jeff Hughes

Since the results of this paper are essentially based on the
original proof of the sphere packing bound as given in [12],
we believe that some historical comments on that proof may
be of particular interest to the reader. It is important to point
out, in fact, that even if [12] contains the first formal proof of
this result, the bound itself had already been accepted before, at
least among information theorists at the MIT.
The main idea behind the sphere packing bound was

Shannon’s [66]. Elias proved the bound for the binary sym-
metric channel in 1955 [7], and the bound for general DMC
was first stated by Fano [11, Ch. 9] as an attempt to generalize
Elias’ ideas to the nonbinary case. Fano’s proof, however, was
not completely rigorous, although it was correct with respect to
the elaboration of the many complicated and “subtle” equations
that allowed him to obtain the resulting expression for the first
time. Fano’s approach already contained the main idea of con-
sidering a binary hypothesis test between some appropriately
chosen codewords and a dummy output distribution, and his
procedure allowed him to solve the resulting minmax opti-
mization problem with a direct approach which, in this author’s
opinion, could be defined “tedious” but not “unenlightening”
[12, p. 91], and which opened in any case the way that allowed
to subsequently obtain the formal proof later on.
It is not easy to precisely understand, from the published pa-

pers, when the formal proof was subsequently obtained and by
whom. In fact, even if it was first published in the mentioned
1967 paper [12], the result must have been somehow accepted
before, at least at the MIT, since Berlekamp mentions the bound
and the main properties of the function in an overview
of the known results on the reliability function in his 1964 Ph.D.
thesis [65, Ch. 1: Historical Backgound], with references only
to [11], [18], [67] “and others.” Gallager, as well, mentions the
bound in his 1965 paper [18] attributing the “statement” of the
bound to Fano (see Section I and (44) therein). Note also that
Fano and Gallager do not call it “sphere packing bound” while
Berlekamp does in his thesis. It is worth pointing out that many
results were not published by their authors at that time, as hap-
pened for example with the Elias bound for the minimum dis-
tance of binary codes, which is described in [13]. Analogously,

in the introduction to [11, Ch. 9], Fano credits Shannon for pre-
vious derivation, in some unpublished notes, of parts of the re-
sults therein. It is known that Shannon was still very produc-
tive during the 1960s [68] and had many unpublished results
on discrete memoryless channels [69]. It is therefore not imme-
diately clear which parts of the ideas used in the proof of the
sphere packing bound were already known among MIT’s infor-
mation theorists. Furthermore, even if the resulting expression
was stated first by Fano, finding the rigorous proof required a re-
consideration of Elias’s original work for the binary case [66].
Finally, an important comment concerns the bound for

constant composition codes with nonoptimal composition. It
is worth pointing out that, while Fano’s version of the sphere
packing bound includes the correct tight expression for the
case of fixed composition codes with general nonoptimal
composition [33], the version given in [12] does not consider
this case, and the bound is tight only for the optimal compo-
sition. The reader may also note that it is not even possible to
simply remove the optimization over in that bound, using

in place of , since it can be proved that constant
composition codes with nonoptimal composition achieve an
exponent strictly larger than at those rates where the
maximizing in the definition of is less than one [33].
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