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“... ma il discorrere è come il correre,

e non come il portare, ...”
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Abstract

A fundamental problem in the field of signal processing is the necessity of representing and

coding signals, this being the key point for the solution of problems arising in well consoli-

dated situations where a signal available as an information source to a given user has to be

either exactly or approximately described to another user. This simply described problem

led to the development of whole branches of communication theory after the appearance of

Shannon’s famous paper [88], part of the developed theory being usually known as source

coding theory.

Most of the research work on lossy source coding has been focusing on theoretical as-

pects of bounds on achievable rates and distortions, while from a practical point of view,

lossy encoding techniques have been studied principally for the particular case of the squared

error distortion criterion. Also, for some years the problems of source coding were only con-

sidered for single sources, i.e. for the case where there is only one user who has some infor-

mation to be transmitted to another user, while, in successive years, more general multiuser

situations were considered

In this work we propose a study of particular representation and coding techniques for

signals that are of interest in two sense. We first study techniques for signal approximations

under the l∞ norm, as a counterpart to the more consolidated use of the l2 norm. Rather

than focusing on theoretical discussions on the problem of rate distortion theory under the

l∞ norm, we consider the more concrete problem of constructing approximations to given

numerical signals. Then we consider the re-emerging field of Distributed Source Coding

(DSC) and its application to Distributed Video Coding (DVC), providing an analysis of the

relations between DSC and DVC, studying proposed DVC techniques from the literature

and developing methods for the practical design of a DVC system. In relation to the DSC

paradigm, within this work we develop a theoretical study of uniquely decodable codes for

constrained sequences, providing a revisitation of fundamental results on coding and on

expected lengths of codes. Focusing then on the topic of DVC, furthermore, we propose a

first study of the problem of registering remote images, providing a framework, based on

the phase of the Discrete Fourier Transform, for registration of remote images in the case of

shift, rotation and scale factors.
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Introduction

Signal representation and coding is a key problem in the field of signal processing, as it is

always important to have both a good way to represent signals in a digital form and to have

good techniques for the encoding of these representations so as to efficiently store or com-

municate them. In this thesis some new aspects of representation and coding are considered

and studied, keeping as a main objective the investigation of innovative approaches to some

problems that are either not much studied in the signal processing community or either of

recently increasing interest.

In signal processing a well consolidated setting for representation and coding problem is

the situation where a signal available as an information source to a given user has to be either

exactly or approximately described to another user. This simply described problem contains

all the elements that lead to the development of a whole branch of communication theory

that deals with the lossless and lossy representation of information sources, i.e. source

coding theory [28]. In source coding theory, starting from a probabilistic description of the

information sources, the bounds on the number of bits required to represent a source within

a given precision are studied. This field of research initiated by Shannon in his famous

paper [88] has been receiving much attention in the years and many subproblems have been

identified. What is important to the present thesis are the following two facts:

1. Most of the research work on lossy source coding in its general form has been fo-

cusing on theoretical aspects for the study of bounds on achievable rate-distortion

trade-off under certain probabilistic model assumptions. From a practical point of

view, lossy encoding techniques have been studied principally only for the case where

signals are real functions of time (or space) and the distortion is measured as the

quadratic difference between an original signal and its approximation.

2. For some years the problems of source coding were only considered for single sources,

i.e. for the case where one user has some information to be transmitted to another

user, without any further entity involved in the problem. In successive years more

general situations were considered where more information sources may be involved

in a multiuser communication scenario [28]. In this new situation, different encod-

ing techniques are possible. They take advantage of the presence of different sources

available to different users. Even if from an information theoretic point of view these
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multiuser problems have been extensively studied from the late 70’s, practical appli-

cations of the underlying ideas have been only very recently conceived.

The two above items are the starting points for the definition of the aims of the work

presented in this thesis. The main objective is in fact the study of particular representation

and coding techniques for signals that are innovative in the sense of the two above mentioned

points. In particular, this thesis is evolves in different directions.

As a first topic, we develop a study of techniques for signal approximations under the

l∞ norm, as a counterpart to the more consolidated use of the l2 norm. Rather than focus-

ing on theoretical discussions on the problem of rate distortion theory under the l∞ norm,

we consider the more concrete problem of constructing approximations to given numerical

signals. We then consider the re-emerging fields of Distributed Source Coding (DSC) and

Distributed Video Coding (DVC) for the development of research contributions that are re-

lated to these topics. In particular we provide an analysis of the relations between DSC and

DVC, with the study of proposed DVC techniques from the literature, and the development

of new methods for the practical design of a DVC systems. We also take inspiration from

DSC and DVC topics for the development of a detailed study of some problems that are of

interest on their own. In particular, we develop an information theoretic study of decodable

codes for certain sources with memory, and we close the thesis with a study of a problem of

remote image registration which is a formalization of a problem frequently encountered in

DVC systems.

The main innovative contributions of the thesis are contained in Chapters 1, 4, 5 and 6,

whose content has partially been (or is going to be) published in [29, 34], [35], [32] and

[36] respectively. Chapters 2 and 3 mainly contain discussions and presentation of research

results from the literature.

Structure of the thesis by chapter.

In Chapter 1 the problem of signal approximation in the l∞ norm is studied from a

practical point of view, proposing algorithms and techniques for the concrete construction of

piecewise approximation under this distortion criterion, that has not received much attention

in the literature. In particular approximations of signals in linear spaces are studied and

an efficient algorithm is presented for the particular case of straight line approximations.

Piecewise approximations are then studied and algorithms for the construction of minimal

and optimal approximations are proposed, with an analysis of the associated computational

complexity. The problem of the encoding of the obtained approximations is considered both

for the case of approximation in general linear spaces, and for the particular case of straight

line approximations.

In Chapter 2 the topic of Distributed Source Coding (DSC) is introduced. The main

results are presented and the fundamental ideas underlying DSC are explained using simple

examples. The basic ideas of what DSC is are first presented without any theoretical analysis

by means of a simple example. Then, the Slepian-Wolf and the Wyner-Ziv theorems, the

two fundamental results of DSC, are introduced and explained. The connection between
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DSC and channel coding is finally analyzed with some detail in order to provide elements

to the discussions presented in the following chapters.

Chapter 3 introduces the recently emerged field of Distributed Video Coding (DVC).

DVC is the application of DSC principles to the practical problem of the encoding of video

sources. In this chapter the first constructions of DVC systems proposed by Berkeley’s

and Stanford’s groups for the single video source problem are presented in details. Some

comments are given on the two proposed approaches and a brief review of the most recent

contribution from the literature is provided.

In Chapter 4 a two-fold contribution to the problem of DVC is given. We first propose a

structural analysis of the use of DSC principles in video coding problems and we focus the

attention on the differences between the theory of DSC and the practical problems encoun-

tered in a DVC system. We put primarily the attention on the “correlation issue” and we

clarify the connection between requirements and motivations for the use of DVC with some

structural constraints to be faced in practical systems.

In Chapter 5 a theoretical study on the use of DSC like codes for the encoding of sources

with memory is provided. As a theoretical modelization of a single camera DVC system, we

consider the use of particular types of codes for encoding certain memory sources. In partic-

ular, in this chapter, the theory of unique decodability is revisited for the case of constrained

sources, providing some unexpected results in the field of lossless coding. A detailed analy-

sis of the equivalence between McMillan theorem on unique decodability and a previous

channel coding theorem by Shannon is provided.

In Chapter 6 we propose a study of a topic, that we call “remote image registration”, that

can be considered as a fundamental component in the use of distributed coding techniques

for images and video. In this chapter we consider the following problem. Let X and Y
be two images that have the same content apart from some shift, rotation or scale factors.

A transmitter has access to X while a receiver has access to Y . We study the problem

of extracting information from X to be sent to the receiver, so that it can recover the shift,

rotation and scale of its own image Y with respect to X . We call this problem “remote image

registration” because it is indeed a problem of image registration where the two images are

not available at the same point, and only a low rate description of one of them can be

used. We show how to solve the registration of shifts by using appropriate sampling and

quantization of the phase of the phase of Discrete Fourier Transform, and we then extend

the method to handle rotation and scale components.





Chapter 1

Approximations of signals under

the l
∞ norm

All exact science is dominated

by the idea of approximation.

– Bertrand Russell –

1.1 Introduction

Approximation of discrete signals by means of continuous time functions has been studied

extensively in the literature (see for example [75, 101] and [70] and references therein for an

overview). Most of the attention has been dedicated to approximations under the l2 norm,

which means that the goodness of the approximation is established by evaluating the mean

square value of the error. In this chapter we study approximations under the l∞ norm.

Given a discrete set of points D = {xi}, xi ∈ R, we consider a discrete signal s as a

function s : D → R that associates a real valued s(xi) to each value xi in D. We indicate

with l∞ the set of functions f bounded over D and with ‖·‖∞ the norm defined, for f ∈ l∞,

by

‖f‖∞ = sup
x∈D
|f(x)|.

As usual, the distance between two functions f1 and f2 is then defined as the norm of the

difference function, i.e. d∞(f1, f2) = ‖f1− f2‖∞. The problem of approximating a signal

s under the l∞ norm consists on finding a function g from a given set of functions G such

that the approximation error, that is the distance d∞(g, s), satisfies some given constraint.

In some cases we will be interested in finding g which approximates s with an error smaller

than a given threshold δ, while in other cases we will want g to be the function of G that

0This chapter includes research results published in [34].
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minimizes this error. In the following sections we will study some of these particular prob-

lems analyzing in details some rather interesting special cases. The chapter is organized

as follows. In Section 2 we briefly present the important case of approximations in linear

spaces; we summarize the current approach for finding the optimal approximation, which

reduces to solving a linear program, and we show how to use this technique for the solution

of a more general approximation problem. For this section we refer the reader to [101] for

a detailed analysis of the approximation problem and to [65] for a general study of linear

and non linear programming theory, even if it is not necessary for the understanding of the

chapter. In Section 3 we consider the particular case of straight line approximations; we

propose an efficient geometric algorithm for finding the optimal solution, showing the com-

putational advantage of this method over the currently best performing linear programming

technique. Then, in Section 4, we consider the problem of piecewise approximations in lin-

ear spaces. We show how to partition a given signal into a minimum number of segments so

as to obtain a piecewise approximation within a given tolerance; we then show how to opti-

mize the partition so as to minimize the error with the same number of segments. Finally, in

Section 5, we analyze the case of straight line piecewise approximations presenting a more

efficient procedure based on the results of Section 3. For a deeper analysis of computational

geometry and optimization techniques used in Sections 3 to 5 we refer the reader to [79, 51]

and [26, section VI] but still this is not necessary for the understanding of the proposed

methods.

1.2 Linear Spaces and Linear Programming

A very important special case of approximation problems is obtained when the domain D
contains only a finite number n of points xi, i = 1 . . . n, and the set G is a linear space

generated from a finite set of basis functions. If m ≤ n is a fixed integer, we take a set

B = {b1, b2, . . . , bm} of m linearly independent functions bj
1, and we consider the set

G = span(B); this means that for every g ∈ G there exists a sequence of coefficients cj

such that

g =

m
∑

j=1

cjbj . (1.1)

This hypothesis implies that every possible approximation g to the signal s is uniquely

identified by a sequence of real coefficients that are its representation in the B basis. Now,

for uniformity with the literature, let us map every function g of G in the vector g of R
n

whose i-th component is the value g(xi), so as to work in a subspace over R
n instead of the

space G.

If A ∈ R
n×m is the matrix with elements aij = bj(xi), equation (1.1) is mapped to

g = Ac.

1Here the term “linearly independent” will mean that any non-trivial linear combination of the bj functions

cannot be null over every point of D.
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Thus, if we want to find the optimal l∞ approximation of a signal s in F , we have to find

the coefficient vector c ∈ R
m that minimizes the value

‖s−Ac‖∞ (1.2)

This problem has been studied extensively in the mathematical and mathematical pro-

gramming literature (an exhaustive overview can be found in [101]; see [15] for a classic

result) and the most recent approach consists in converting it to a linear program in m + 1
dimensions. Accordingly, let u ∈ R

n be the vector with all its components equal to 1; then,

for every fixed c, the value in equation (1.2) is given by the smallest possible value of e, say

e∗(c), that satisfies

−eu ≤ s−Ac ≤ eu,

where inequalities between vectors are to be intended, here and in what follows, component

by component. Subsequently, minimizing (1.2) is equivalent to minimize e∗(c) as a function

of c.

If we set d = (c, e) and we call em+1 the (m + 1)-th vector of the canonical base of

R
m+1 (i.e the vector whose (m + 1)-th component is equal to 1 and all other components

are zero), we are minimizing the linear function

z = eT
m+1d

under the conditions
[

A u

−A u

]

d ≥

[

s

−s

]

This formulation is exactly the enunciate of a linear programming problem in m + 1 di-

mensions. Thus, for finding the solution of the approximation problem, it is possible to

take advantage of the most advanced linear programming techniques that are available in

the literature. In our case, however, it is particularly interesting to note that, if the parameter

m can be considered fixed and much smaller than n, it is possible to solve the problem in

O(n) expected operations, as shown in [87, 69] (see also [81, Ch. 9]). In the following we

will always consider the parameter m to be constant, and we will thus assume that in linear

spaces it is possible to compute the optimal l∞ approximation in linear time (with respect

to the number n of samples).

It is interesting to note that the idea of l∞ approximation can be extended to a more

general approach. Suppose, indeed, that we are still interested in controlling the approxi-

mation error in every point, as in l∞ approximations, but assigning different weights (or,

more precisely, different offsets) to different domain coordinates, i.e. approximate s with a

maximum error that differs from point to point. Formally this is expressed by stating that

we want to find a function g such that

|s(xi)− g(xi)| ≤ t(xi), i = 1 . . . n (1.3)

where t(xi) is the allowed error in the point xi. Interestingly this problem can be treated in

the same way, by using the additional variable e and minimizing e subject to the constraints

|s(xi)− g(xi)| ≤ t(xi) + e, i = 1 . . . n (1.4)
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In this case, clearly, we aim at finding a non-positive value of e, thus verifying if the problem

is feasible or not (i.e. a function g satisfying eq. (1.3) exists). If a positive value is obtained,

we conclude that the problem is not feasible but having reached the knowledge of how

far we are beyond the tolerance t. If, instead, a negative value of e is obtained, we know

that the problem is feasible and we find the approximation that maximizes the margin from

the threshold. In the latter case, however, it is important to note that the minimum value

of e cannot be less than −mini(t(xi)), as the values on the right hand side of eq. (1.4)

must be non-negative. Thus, by calling xm the point in which t reaches the minimum, in

some cases it is possible to fit s in xm while still satisfying eq. (1.3) for every other point

xi. In this case, in the linear program, we have a constraint (given by the point xm, i.e

|s(xm) − g(xm)| ≤ t(xm) + e) that is orthogonal to the minimization vector and thus

the solution is not unique. In this situation it could be convenient to project the problem

into the hyperplane s(xm) − g(xm) = 0, so as to optimize the approximation over xi6=m

while imposing exact interpolation in xm. We conclude by clarifying that a program for the

classical l∞ approximation can be used for this more general type of approximations. In

fact, let d be a constant such that d > ‖t‖∞. Thus, if we set s+(x) = s(x)− t(x) + d and

s−(x) = s(x) + t(x)− d, it is easy to see that eq. (1.3) is equivalent to

{

|s+(xi)− g(xi)| ≤ d
|s−(xi)− g(xi)| ≤ d

i = 1 . . . n

Thus, the approximation of s with a variable tolerance t can be obtained by approximating

s+ and s− jointly with the usual l∞ norm. This idea has been of practical utility, in the

field of image coding, for example in [30], where a separable approach has been used for

the problem of finding bidimensional l∞ sub-optimal bilinear approximations. We refer the

reader to [30, 31, 33] for more details.

1.3 Linear approximations

In this section we study the particular case of linear approximations, i.e. by means of first

order polynomials. In this case the general function g of G is expressed as g(x) = ax + b
where a and b are real numbers. It is clear that in this case we can take B = {1, x}; thus

the space G has dimension 2 and the problem of finding the best approximation of a given

signal s is equivalent to solve a 3-dimensional linear program. In particular, we have to

minimize the linear function

z = [0, 0, 1]





a
b
e




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under the constraints




























x1 1 1
x2 1 1

...
...

...

xn 1 1
−x1 −1 1
−x2 −1 1

...
...

...

−xn −1 1

































a
b
e



 ≥





























s(x1)
s(x2)

...

s(xn)
−s(x1)
−s(x2)

...

−s(xn)





























For what has been said at the end of the previous section, very efficient linear programming

techniques are available for this problem and the optimal approximation can be found in

O(n) expected number of operations. The expectation is due to the fact that such linear pro-

gramming techniques are based on randomized methods and thus the number of operation

used for a fixed signal is a random variable. We propose here a geometric based algorithm

which can outperform the linear programming technique, by exploiting the particular na-

ture of the problem. The advantages of this algorithm will be detailedly exposed in the next

section; we only remark here that it is deterministic and uses O(n) operations in the worst

case, as we will prove in what follows.

1.3.1 Geometric algorithm

Let D = {xi}i=1...n be the domain of n points of R, s be the signal, and let S be the set of

n points si of the signal samples in the plane, i.e. si = (xi, s(xi)). Let Q be the convex hull

of S, that is the smallest convex polygon that contains every point of S. Let us define some

notations for clarity. Let k be the number of sides of Q; we indicate with pi, i = 1, . . . , k,

the vertices of Q in counterclockwise order, with p1 the left most one. For convenience we

add a new point pk+1 = p1; then we indicate with li, i = 1 . . . k, the side pipi+1. Let m
be the integer such that pm is the right most vertex of Q; then we will call lower-hull the

polygonal line formed by the sides li, i = 1 . . . m− 1, and upper-hull the polygonal line

formed by the sides li, i = m. . . k. We will consider that the vertices p1 and pm belong

to both the upper- and lower-hull. Finally, given a side l and a point p we will say that p is

x-internal to l if the vertical line through p cuts the side l; on the contrary, we will say that

p is x-external on the left or on the right, the meaning being obvious.

Now, suppose for a moment, for simplicity of the presentation, that Q has no pair of parallel

sides. Then, to each side l of Q it is possible to find a vertex v(l) of Q that is the most

distant one from l in the orthogonal direction; we call v(l) opposite vertex to the side l.

Proposition 1.3.1 Under the above hypothesis, there exists one and only one side l of Q
such that v(l) is x-internal to l. The optimal linear approximation of the signal s over the

domain D is then the line r parallel to l and equidistant from l and v(l). (For a proof see

appendix A). We call the extremities A and B, A < B, of the side l and the opposite vertex
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(a) Signal samples.
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(b) Convex-hull found.

A
B

C

r

(c) Solution found.

Figure 1.1: Steps of the geometric method for single link optimal solution

C = v(l) pivot points of the set S, so as to identify the three points that determine the

optimal linear approximation.

This proposition gives a very useful property of the geometry of the polygons and by

using this proposition we can construct a very efficient geometric algorithm to find the l∞

optimal linear approximation of a signal s (see Fig. 1.1).

Algorithm 1

• Compute the convex-hull of the set S,

• scan the sides of the convex-hull computing their opposite vertex until the pivot points

A, B and C are found,

• compute the solution line r.

We now give a detailed explanation of the first two steps of Algorithm 1 (the third step

is only a simple computation), for which we propose efficient sub-algorithms showing that

the number of operations is O(n).

Computing the convex-hull

Finding the convex-hull of a set of points in the plane is one of the most studied problems

of computational geometry and several algorithms are available for this task (see [14] and

[79]). One important thing to be considered here is that the points are sorted with respect
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q1

q2

q3

q4

qn

Figure 1.2: Example of construction of the convex hull with Graham’s method. The point qn

has to be inserted after q2 because −−→q1q2×
−−→q2qn > 0 while −−→q2q3×

−−→q3qn < 0. Symmetrically,

qn has to be inserted before q4 because −−→q4q3 ×
−−→q3qn > 0 while −−→q1q4 ×

−−→q4qn < 0

to the x coordinate. Under this hypothesis it is possible to find the convex-hull of the set S
in O(n) operation using Graham’s algorithm ([52]). Here we recall only that the main idea

is to construct the convex-hull by moving from left to right; at every step the polygon is

updated by adding a new point and removing the sides of the polygon that are visible by the

entering point. The only basic operation that is required for this algorithm is the evaluation

of the order of three generic points q1 q2 and q3 in the plane2, and it is easy to see that this

evaluation is nearly equivalent to the evaluation of the vector product −−→q1q2 ×
−−→q2q3 (see Fig.

1.2 for a graphical explanation. See also [26, Sec. 33.3] for a detailed description of these

operations).

Finding the vertices A, B and C

Once we have constructed the convex hull Q of the set S we have to search the side l such

that its opposite vertex v(l) is x-internal to l. We now state some simple lemmas that suggest

an efficient way to find the searched l and v(l). These lemmas are proved in appendix, where

they are also used for the proof of proposition 1.3.1.

Lemma 1.3.2 Every side of the lower-hull has its opposite vertex in the upper-hull and

viceversa.3

Lemma 1.3.3 If we move from one side of the polygon to its consecutive in counterclock-

wise (ccw) direction, the respective opposite vertex, if it changes, moves in ccw direction

too.

Lemma 1.3.4 A Vertex pj , 1 < j ≤ k, is the opposite vertex of a side li, i.e. pj = v(li), if

it is more distant from li than the vertices pj−1 and pj+1.

These considerations lead to a good algorithm for finding the opposite vertex of each

side of the lower-hull, and thus also the searched l and v(l). As a general notation we call

ji the integer such that pji
= v(li).

2The order of three points q1 q2 and q3 is defined to take value: 0 if the three points are aligned, 1 if the

oriented polygonal q1 → q2 → q3 turns counterclockwise and -1 if it turns clockwise.
3Remember that p1 and pm belong to both the upper- and lower-hull
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Algorithm 2

• Find the opposite vertex of l1: starting from pm scan in ccw direction the vertices of

the upper-hull, computing their distances from l1 until we find a vertex pj1+1 which

is less distant from l1 than pj1 . Thus v(l1) = pj1 .

• Continue by considering the sides of the lower-hull to find their opposite vertices.

For each side li we have to control the vertices of the upper-hull from v(li−1) (in

ccw direction) until we find a vertex pji+1 that is less distant from li than pji
. Then

v(li) = pji
.

• Do the same, symmetrically, for the upper-hull sides.

Proposition 1.3.5 Algorithm 2 requires at most 3k vector product evaluations4 of the type
−−−−→pipi+1 ×

−−−−→pi+1pj for finding the opposite vertices of all convex-hull sides.

Proof. Consider for a moment only the number of distance evaluations required for finding

the opposite vertices of the lower-hull sides. Consider the generic side li and suppose we

have found the opposite vertex pji−1
of the previous side li−1, i.e. pji−1

= v(li−1). It is

easy to see that for finding the opposite vertex pji
of li one must compute 2 + (ji − ji−1)

distances. For example, suppose v(l2) = p8 and v(l3) = p10; if p8 = v(l2), in order

to find v(l3) one has to compute the distances of p8, p9, p10 and p11 from l3, and thus

4 = 2 + (10 − 8) distances. For the first side l1, the same argument holds setting j0 = m,

as for the side l1 we start check the vertices starting from pm. This means that the total

number of computed distances is
∑m−1

i=1 (2 + ji − ji−1) = 2(m − 1) + (jm−1 −m). But

clearly jm−1 ≤ k + 1 and thus the opposite vertices of the sides of the lower hull are found

by computing at most k + m − 1 distances. Considering the symmetry of the problem we

can say that the opposite vertices of the upper-hull sides can be found by computing at most

2k−m+1 distances, for a total of at most 3k distance evaluations. It is clear, however, that

the algorithm will stop, for the problem of interest, when the side l with opposite x-internal

vertex has been found. Finally, we now show that in fact one does not need to compute 3k

distances but only 3k vector products of the type−−−−→pipi+1×
−−−−→pi+1pj , which represent a smaller

computational cost. In fact, when searching the opposite vertex of the generic side li, we do

not need to really know the distances of the generic point pj from li, but only compare the

values for different j. Considering that the distances of pj from li (for varying j but fixed i)
are proportional to the areas of the triangles of vertices pi, pi+1, and pj , we can compare the

value of these areas instead of the distances. Since twice the area of the triangle of vertices

pi, pi+1, and pj equals the vector product −−−−→pipi+1 ×
−−−−→pi+1pj , this implies that the algorithm

requires only 3k such vector products.

Going back to Algorithm 1, it can be stated that this algorithm requires O(n) operations

and that the only required basic function is the evaluation of vector products. Whereas from

4Recall that k is the number of sides of the convex hull.
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a theoretical point of view Algorithm 2 is quite useful, it can be further improved by using

the following property of a convex-hull Q.

Lemma 1.3.6 Given two consecutive sides li and li+1, their common vertex pi+1 is oppo-

site vertex of every side between v(li) and v(li+1) (in the path not containing li and li+1,

obviously).

With such a consideration Algorithm 2 can be modified as follows:

Algorithm 3

• Find v(l1), opposite vertex of l1, as suggested in Algorithm 2;

• for i ≥ 1, once v(li) is found check

a) if v(li) is x-external to li on the right go on searching v(li+1),

b) else if v(li) is x-internal to li terminate the search,

c) else if v(li) is x-external to li on the left, search the side of the upper-hull

between v(li−1) and v(li) such that the common vertex of li−1 and li, i.e. pi, is

x-internal to it.

It is important to note that this algorithm is strongly based on the proof of Proposition

1; this ensures that one of the items b) or c) is reached before finishing scanning the sides

of the lower-hull and thus the algorithm always finds the solution. With this algorithm the

number of computed vector products is reduced by about a factor 2 in the mean case with

respect to the performance of Algorithm 2.

1.3.2 Performance comparison

Compared to the linear programming solution the geometric algorithm has many advan-

tages. The first one is that it is very easy to implement and it generates a very compact

code. As it has been shown, all the computations in the construction of the convex-hull and

the scanning of its side-vertices pair can be reduced to a vector product operation; thus, the

implementation requires a few loops calling a simple function for the computation of a vec-

tor product. Furthermore, as the vectors are always coplanar, this operation is only a sum

of products of the type e=ab+cd, which can be executed very efficiently on many DSP’s.

Moreover, the memory usage is very limited; the only memory space needed (apart from

the input sequence) is a vector containing the indices of the points that are vertices of the

convex-hull Q, which represent at most n integers. Furthermore, it is important to note that,

if we are working with discrete signals, almost all the computations can be performed using

only fixed point arithmetic. The only need for floating point operations is indeed due to the

construction of the optimal line from the pivot points and the evaluation of the approxima-

tion error, which represent a fixed number of operations. This is an important consideration

in case a floating point unit is not available.
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(a) Signal used for approximations. The near-linear behaviour has been obtained by

summing small sinusoidal functions and white gaussian noise to a straight line.
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Figure 1.3: Comparing the number of operations used by the geometric method and Seidel’s

randomized algorithm for linear programming in small dimensions.
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Finally, an important consideration is about the computation time. First of all, from a

theoretical point of view, our algorithm has a computation time that is O(n) in the worst

case, while the linear programming techniques can only provide a solution in O(n) on av-

erage. For practical considerations, then, we have compared our algorithm with an ad-hoc

implementation of the Seidel randomized algorithm for linear programming in small dimen-

sions [87], which is known to be very fast for this kind of problems. For this purpose we

have counted the number of operations used by the two algorithms, so as to remove any de-

pendency on the machine architecture, type of data (we recall that our algorithm can work

without using floating point arithmetics) and, mostly important, memory usage5. We have

taken a signal with near-linear behavior, shown in Fig. 1.3(a), and we have computed the

linear approximation of the first n points, with n varying from 4 to 500. The number of

operations used by the two methods, as a function of n, are plotted in fig. 1.3(b). As it can

be seen, the Seidel algorithm presents an irregular behavior, due to its randomized nature,

having linear complexity in the mean. The geometric method, instead, gives a regular in-

crease of the number of operations, which leads to a speed up by a factor ranging from 3 to

more than 15 with respect to the Seidel algorithm, with a mean gain of about 8.

1.4 Piecewise approximations with error bound

Often signal approximation in linear spaces is not a practical tool for signal processing and

coding due to the fact that the dimension of the approximation space must increase with

the number of samples if we want to keep small values of the error. Thus, it is necessary

to divide the domain in smaller subdomains (intervals) such that the signal can be approx-

imated with small error in a small dimensional space within every domain. With this idea,

we define a more general function space: given a set of functions B (and the induced G) we

call GT the set of functions g over D for which there exists a partition of D in subdomains

∆k such that the restriction of g to every ∆k is in G.

In this section and in the next one, we study the problem of optimizing the partition of the

domain into connected subdomains while approximating the signal within an error thresh-

old. Consider that, given a partition of the domain, the problem of approximating the signal

within each subdomain is only an application of what has been described in the preceeding

section 1.2. So, in the following, the emphasis will be addressing mainly the partition of

the domains. For the sake of clarity, we suppose that the set S is characterized by xi = i,
i = 1 . . . n, even though the presented results hold in the case of non uniform samples.

Given any piecewise approximation g of the signal, we characterize it with an error e(g),
a number of connected subdomains ν(g) and a partition set P (g) = {pi(g)}i=1..ν(g)−1 of

values such that pi = m + 1/2 if m is the last point of the i-th interval and m + 1 is the

5It is also relevant to notice that, for a fast implementation of the Seidel algorithm, one should not make use

of dynamic memory allocation; this implies the necessity of allocating more than 30n floating point variables,

against the n integers of the geometric algorithm. If instead one wants to reduce memory usage (in any case much

more than n integers), memory should be allocated dynamically, thus leading to a significant reduction of the

computational efficiency.



16 Chapter 1

p0 p1 p2 p3

Figure 1.4: Example of piecewise approximation of a 16 sample signal with associated

partition points. Here ν(g) = 3, p0 = 0.5, p1 = 4.5, p2 = 10.5 and p3 = 16.5

first point of the (i+1)-th interval. Moreover, we set p0(g) = 1/2 and pν(g)(g) = n+1/2,

and it is implicitly considered that the partition points pi can only take values of the type

m + 1/2 with m ∈ N. See fig. 1.4 for an example of piecewise approximation with the

associated partition points. All considered intervals6 are measured on a discrete half integer

value. Thus we will identify the “approximation on the interval [3/2,7/2]” as “the one of

locations 2 and 3”; similarly, by stating “the partition point pi is in ]3/2, 7/2]” is equivalent

to say “pi ∈ {5/2, 7/2}”.

We now study the problem of optimally partitioning the domain, by introducing the idea

of minimal and optimal approximations for a given error threshold δ.

1.4.1 Minimal Solution

The problem to be solved is the following: given the set S of n samples of signal s, the set

B of the basis functions and an error bound δ, we want to find an approximation g ∈ GT of

s with error e(g) ≤ δ such that the number ν(g) of intervals is the smallest possible.

In general there are more solutions to this problem, and we aim at finding at least one of

them. Interestingly enough, it is possible to find two solutions (not necessarily distinct) with

a very simple algorithm, by scanning the signal in a progressive fashion.

For finding these solutions we first need an algorithm that finds, given any point sk =
(xk, s(xk)), the “longest” possible approximation of s starting from it in one direction,

e.g. the maximum value l such that the points si = (xi, s(xi)), i = k . . . k + l can be

approximated in B with error smaller than the threshold δ. This leads to an approximation

of the l points which is consistent with the error constraint δ. The algorithm is the following:

Algorithm 4

• Compute the optimal approximations over the intervals [k, k+1], [k, k+2], . . . , [k, k+
2j ], . . . until an error larger than δ is obtained (which happens for j = ⌈log2 l⌉); call

a = ⌈log2 l⌉.

• Find l with a binary search on the interval [2a−1, 2a[.

6We use bracket notation for intervals. So, [a, b] is the interval containing both a and b while ]a, b[ contains

none, [a, b[ contains a but not b and ]a, b] contains b but not a.
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Proposition 1.4.1 Algorithm 4 requires an expected number of O(l log l) operations.

Proof. Consider the first step of the algorithm; the optimal approximation over the generic

interval [k, k + 2j ] can be found in O(2j) expected operations using Seidel randomized

algorithm, as explained in section 1.2. Thus, a is found in
∑a

j=0 O(2j) = O(2a+1) op-

erations. Then, the second step of the algorithm computes at most a approximations of

length less than or equal to 2l. So, the expected number of operations for the second step is

O(a · l) = O(l log l), which is the dominating term.

We now apply the proposed algorithm for the construction of two approximations that

we will prove to be minimal. We indicate these approximations with −→g and ←−g so as to

emphasize the fact that they are obtained by scanning the signal respectively from left to

right and viceversa. Here we give the algorithm for finding −→g .

Algorithm 5

• Start by scanning the signal from the first point s0. Using Algorithm 4, find the first

longest possible approximation segment, and thus the partition point p1(
−→g ). Set i to

1.

• Given pi(
−→g ), compute the longest possible approximation segment (using Algorithm

4) starting from pi(
−→g ), and thus find pi+1(

−→g ). Repeat until the end of the signal is

reached.

Proposition 1.4.2 Algorithm 5 requires an expected number of O(n log n) operations.

Proof. Note that, set li = pi(
−→g ) − pi−1(

−→g ), from proposition 1.4.1, we need O(li log li)
operation for finding pi(

−→g ). Thus, we need
∑

i O(li log li) operations; considered that
∑

i li = n, we have
∑

i O(li log li) <
∑

i O(li log n) = O(n log n).

Clearly, the same procedure of Algorithm 5 can be used analyzing the signal from right

to left to obtain the approximation that we denote with←−g . It is also clear that both −→g and
←−g depend on δ; we now show that they are indeed minimal for that given value of δ.

Proposition 1.4.3 The two approximations −→g and←−g lead to the same number of segments

k = ν(−→g ) = ν(←−g ), and every approximation h such that e(h) ≤ δ satisfies ν(h) ≥ k.

Proof. Consider the construction of−→g . The way p1(
−→g ) was obtained implicitly says that it

is not possible to approximate the interval [1, p1(
−→g )+1] with a single segment (without ex-

ceeding the value of δ); h cannot be an exception and thus P (h) must have a partition point

p1(h) in the interval [1, p1(
−→g )]. Similarly it is not possible to approximate with a single

segment the interval [p1(
−→g ), p2(

−→g )+1], so that P (h) must have at least another point p2(h)
in ]p1(

−→g ), p2(
−→g )] as p1(h) ≤ p1(

−→g ). By iterating the argument, this proves by induction

that for 1 ≤ i ≤ k − 2 there must exist a point of P (h) in the interval ]pi(
−→g ), pi+1(

−→g )]
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and thus ν(h) ≥ k. In particular, setting h = ←−g , we obtain that ν(←−g ) ≥ ν(−→g ); but, by

symmetry of the construction process, in the same way we could prove that ν(h) ≥ ν(←−g )
and thus, setting now h = −→g , ν(−→g ) ≥ ν(←−g ). This means that ν(−→g ) = ν(←−g ) and that this

number k of intervals is minimal.

1.4.2 Optimal Solution

In the preceeding section we have seen how to find a piecewise approximation that uses

the minimum number of intervals in O(n log n) operations. More specifically, we have

seen that it is possible to find two solutions −→g and ←−g , each being minimal. Now, given

that the number of used intervals cannot be further lowered, we can ask for the minimal

approximation that minimizes the approximation error. For this task, we now show that the
−→g and ←−g solutions provide two partition sets that are a sort of extremes of the possible

partition sets of any minimal approximation. More precisely, we have the following.

Proposition 1.4.4 If h satisfies e(h) ≤ δ and ν(h) = k then, for every 1 ≤ i ≤ k − 1, we

have pi(
←−g ) ≤ pi(h) ≤ pi(

−→g ).

Proof. If e(h) ≤ δ, we have already proved (in the proof of Proposition 1.4.3) that there

exists a point of P (h) in ]pi(
−→g ), pi+1(

−→g )] for 0 ≤ i ≤ k − 2. If ν(h) = k then in each

interval there is exactly one point, which has to be pi+1(h). This holds for h = ←−g so that

pi(
−→g ) < pi+1(

←−g ) ≤ pi+1(
−→g ). By symmetry we can say that if e(h) ≤ δ and ν(h) = k

there is exactly one point pi(h) in [pi(
←−g ), pi+1(

←−g )[ for 1 ≤ i ≤ k − 1 and, for h = −→g we

obtain pi(
←−g ) ≤ pi(

−→g ) < pi+1(
←−g ). By combining these inequalities we reach the result

that if h is a k-link solution then pi(
←−g ) ≤ pi(h) ≤ pi(

−→g ) for every 1 ≤ i ≤ k − 1.

From now on we will call wi = pi(
−→g )− pi(

←−g ) + 1 the number of possible values that

pi can take, using the notation pj
i = pi(

←−g ) + j − 1, j = 1 . . . wi. Furthermore, we follow

the notation of the previous section and set li = pi(
−→g ) − pi−1(

−→g ); thus wi ≤ li for every

value of i (see Fig. 1.6).

The above consideration provides a very important property of the possible partitions

of the domain to obtain a minimal solution, because it reduces enormously the number of

possible choices of the partition points and it gives then the possibility of efficiently finding

the optimal solution. We show, in fact, that it is possible to reduce the problem of finding the

optimal approximation to the problem of finding a minimum-path in a graph (see [26, Sec.

VI] for a presentation of general graph algorithms. Also note later that our graph problem

is not a minimum-path problem in the classic sense, as the metric is usually additive in such

problems, but this has no practical implication). Note that every piecewise approximation

can be considered as a path between the first point and the last one, passing through some

nodes that are represented by the partition points. Every interval is then represented as a link

between two nodes, and we can associate to every link a cost given by the l∞ approximation

error over the corresponding interval. Considering that every minimal approximation has
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Example of Domain Partition

We show an example of the algorithm for finding the optimal partition set. A signal,

which we suppose to have 16 samples, is first approximated as explained in paragraph

1.4.1, by scanning it from left to right and right to left, obtaining the two approximations
−→g and ←−g . Suppose that these two partitions result as shown in fig. 1.5(a), so that

P (−→g ) = {0.5, 4.5, 7.5, 11.5, 14.5, 16.5} and P (←−g ) = {0.5, 2.5, 6.5, 9.5, 13.5, 16.5}.
Thus, we have some restrictions on the possible positions of the optimal pi, as shown in

the figure. Now, we construct the trellis associated with these possible choices. So, we

have three states for p1 and p3 (i.e. w1 = w3 = 3) and two states for p2 and p4 (i.e.

w2 = w4 = 2). To find the optimal path in the trellis we flag every link with a weight

given by the approximation error on the interval relative to that link (small numbers in

Fig. 1.5(b)); then, moving from left to right, we flag the nodes with the accumulated

state metric values (larger numbers on Fig 1.5(b)), as explained in section 1.4.2. In Fig.

1.5(b) the dashed links are those that have been discarded because of non-optimality

while the solid ones are the optimal choices for their entering nodes. The bold path is

overall the optimal one, as it is the only path from p0 to p5 that can be constructed with

solid links only.

−→g

←−g
p0 p1 p2 p3 p4 p5

(a) Example of partitions of a domain
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(b) Trellis equivalent to the partition example.

Figure 1.5: Finding the optimal partition set.
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exactly one partition point in every interval [pi(
←−g ), pi(

−→g )], we can represent the whole

set of these approximations with a trellis graph of the type shown in fig. 1.5(b), in which

nodes on the same column represent possible positions of one single partition point. In this

graph we have to search the path that goes from the first point to the last one minimizing

the greatest value encountered on its links. It is not difficult to note that this problem can

be solved with a variant of the well known Viterbi algorithm ([98]); the only difference is

that, while the Viterbi algorithm is based on an additive metric, here we have to use the

maximum metric. This means that the cost of a path in the trellis is not given by the sum

of the costs of the single links, but by the maximum of their values. The idea is to find the

optimum path proceeding from left to right. We label every node pj
i with an accumulated

state metric e(pj
i ), which represent the cost of the optimal path from the point p0 to it, and

we establish its antecedent a(pj
i ) which is the optimal choice of the point pi−1 for reaching

pj
i . In order to be more precise, called ε(pj

i , p
l
i+1) the cost of the link connecting pj

i to pl
i+1,

we give the detailed algorithm for finding the optimal path in the graph.

Algorithm 6

• Define, for r = 1, . . . , w1 the accumulated state metrics of the pr
1 points as e(pr

1) =
ε(p0, p

r
1) and the antecedent points as a(pr

1) = p0.

• Given the accumulated state metrics of the points pr
i , r = 1, . . . , wi, define, for l =

1, . . . , wi+1, the value e(pl
i+1) as

e(pl
i+1) = min

r

(

max(e(pr
i ), ε(p

r
i , p

l
i+1))

)

, (1.5)

and a(pl
i+1) = prmin

i , where rmin is the value of r that gives the minimum in (1.5).

Iterate this point until pk+1 = n + 1/2 is reached.

Consider the behavior of this algorithm. In the first step the accumulated metrics for the

points pr
1 are set. Then, for every possible choice pl

2 of p2 we select the point pr
1 such that

the value max(e(pr
1), ε(p

r
1, p

l
2)) is the smallest possible. So, for every pl

2 we keep only one

point pr
1 and consequently one path, that is the optimal choice for reaching pl

2. Then we

define the new accumulated metric e(pl
2) = max(e(pr

1), ε(p
r
1, p

l
2)) and we repeat iteratively

the process, finding the optimal value of p2 for every possibile choice of p3 and so on. At the

end we will reach pk establishing the optimal choice of pk−1 and then, by backpropagation,

the optimal path from p0 to pk.

Now we want to study the computational complexity of this procedure; for this purpose

consider that the most expensive operations are not due to the Viterbi algorithm, but to the

evaluations of the link costs ε(pr
i , p

l
i+1). Thus, we should reduce as much as possible these

evaluations and this can be done by considering some particular relationships between the

costs of the links entering or leaving the same node. In otheer words, the minimization in

eq. (1.5) can be performed by considering only a subset of the pr
i as candidates for being

a(pl
i+1).
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Figure 1.6: Computational complexity of the evaluation the link weights ε(pr
i , p

l
i+1). For

every fixed pl
i+1 we can find the optimal pr

i with a binary search, thus computing log2(wi)
approximation. The number of points used in every approximation is at most wi + li+1;

clearly, for every i we have wi ≤ li and thus the number of expected operation in finding the

optimal pr
i for every fixed pl

i+1 is less than or equal to (li + li+1) log2 li. When all the pl
i+1

points are checked the number of expected operation is then at most (li + li+1)li+1 log2 li

Proposition 1.4.5 For a fixed pl
i+1, e(pl

i+1) in eq. (1.5) (and thus a(pl
i+1)) can be found

with a binary search on pr
i , evaluating only log2 wi link costs ε(pr

i , p
l
i+1).

Proof. First consider that ε(pr
i , p

a
i+1) ≥ ε(pr

i , p
b
i+1) if a > b and this implies by induction

(as it is obvious) that e(pa
i ) ≥ e(pb

i ) if a > b. Furthermore, if a > b, we clearly have

ε(pa
i , pl

i+1) ≤ ε(pb
i , p

l
i+1),∀l = 1, . . . , wi+1. This means that, for every fixed pl

i+1, when r
ranges from 1 to wi the values e(pr

i ) are nondecreasing and the values ε(pr
i , p

l
i+1) are nonin-

creasing. Thus, suppose that for a given value of r, say r = a, we have e(pa
i ) > ε(pa

i , pl
i+1);

then, in this point, clearly max(e(pr
i ), ε(p

r
i , p

l
i+1)) = e(pr

i ) and, in order to lower this value

so as to find the minimum in eq. (1.5), we must move pr
i from pa

i on the left. On the contrary,

if for a value of r, say r = b, we have e(pb
i ) < ε(pb

i , p
l
i+1) then we must move pr

i on from

pb
i on the right, so as to decrease the value of ε(pr

i , p
l
i+1). The above argument implies that

it is possible to search the optimum pr
i with a binary search; we check first the point p

[wi/2]
i ,

then p
[wi/4]
i or p

[3wi/4]
i , depending on whether e(p

[wi/2]
i ) > ε(p

[wi/2]
i , pl

i+1) or not, and so

on, dividing by a factor of 2 the possible positions of pr
i at every step, and thus finding the

minimum in log2 wi steps. Note that if a value of r is found such that e(pr
i ) = ε(pr

i , p
l
i+1),

then this r is optimal.

We now give an upper bound on the number of operations needed for the execution of

algorithm 6.

Proposition 1.4.6 Algorithm 6 needs at most an expected number of O(n2 log n) opera-

tions, being n the total number of samples.

Proof. We refer to Fig. 1.6 as a support for the computational complexity analysis. In

the whole proof we make use of the fact that for every i we have wi ≤ li. We first con-

sider the computations of the values e(pr
1) and e(pk), and then consider all other partition

points. For finding the accumulated state metrics of the points pr
1 we have to compute

ε(p0, p
1
1), ε(p0, p

2
1), . . . , ε(p0, p

w1
1 ), and thus w1 approximations, each one of length less
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than or equal to l1. So, the total number of expected operations needed for the pr
1 points is

at most O(w1 · l1) ≤ O(l21). For finding e(pk), instead, from Proposition 1.4.5, we have

to compute log2 wk−1 approximations, each one of length less than or equal to lk + wk−1.

So, for pk, the expected number of operations is at most O((wk−1 + lk) · log2 wk−1) ≤
O((lk−1 + lk) · log2 lk−1). For every remaining point7 pi, 1 < i < k, we have to compute

wi log2 wi−1 approximations of length less than or equal to wi−1 + li, and the expected

number of operations is bounded by O((li−1 + li) · li · log2 li−1). Thus the total number of

expected operations is at most

O

(

l21 +

k−1
∑

i=2

((li−1 + li)li log2 li−1) + (lk−1 + lk) log2 lk−1

)

(1.6)

and, considered that li ≤ n for all i (and thus that we can bound the logarithms with log2 n),

we have at most

O

(

n log2 n

(

l1 +

k−1
∑

i=2

(li−1 + li) + (lk−1 + lk)

))

(1.7)

operations. Now, as
∑

i li = n, this quantity is at most O(2n2 log2 n) = O(n2 log n).

It is possible to show that this bound cannot be further lowered, because we can construct

an example of partition for which the algorithm has complexity of exactly O(n2 log2 n)
expected operations. Neverthless, this estimation can be very pessimistic in most practical

situations. In many applications, in fact, we can suppose that the maximum length maxi(li)
of the approximation intervals is asymptotically bounded8 with respect to the number of

points n. In this case we have the following:

Proposition 1.4.7 If maxi li is bounded with respect to the number of points n, then algo-

rithm 6 needs an expected number of O(n) operations.

Proof. Suppose li ≤ L,∀i, independently of the value of n. Then equation (1.6) can be

bounded by

O

(

L2 +

k−1
∑

i=2

2L2 log2 L + 2L log2 L

)

≤ O(kM) = O(k), (1.8)

where M = 2L2 log2 L. But, clearly, k satisfies n/L ≤ k ≤ n, and the complexity is thus

O(n).

7i.e. for evaluating the values e(pj
i ), j = 1, . . . , wi for a fixed 1 < i < k.

8This assumption is completely natural when the variation of the number of samples n is due to the time

windowing of a given signal. Consider for example an audio signal: unless we are talking of silence, it makes

sense to suppose that the maximum interval length does not depend on the number of samples we are studying (if

we are using a predefined constant sampling frequency).
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Table 1.1: Minimum number of intervals and optimal error value obtained for various error

threshold δ, when approximating the signal dotted in fig. 1.7(a).

δ k opt. er. δ k opt. er.

120 1 101.94 11.55 8 11.29

101.93 2 52.72 11.28 9 10.68

52.71 3 13.91 10.67 10 10.60

13.90 4 13.74 10.59 11 10.42

13.73 5 13.05 10.41 12 10.04

13.04 6 11.58 10.03 13 9.93

11.57 7 11.56 9.92 14 9.43

Now that we have estimated the complexity of the method with respect to the number

of points, it is important to clarify that the execution time is very much influenced by the

selected error threshold. Even if at a first glance this seems counterintuitive, we have to

consider that the dimension of the obtained trellis depend on the error bound δ. Suppose, in

fact, that the signal is such that it can be approximated with a number k of intervals if and

only if the error threshold δ is in the interval [δ1, δ2[. Then, clearly, the obtained optimal

solution has an error equal to δ1, and does not depend on δ if it is in the considered interval.

On the contrary, the two minimal approximations −→g and←−g depend on δ and, in particular,

the larger the value of δ the more different their partition sets P . As a consequence, the

constructed trellis varies from a trivial one for the value δ = δ1 to a maximum dimension

when δ approaches δ2. This fact is better shown with an example; in Fig. 1.7(a) we can

see the optimal approximation (solid line) obtained when approximating the given signal

(dotted one) with an error threshold in the interval [14, 52], using as basis functions9 B =
{1, x, sin(πx/50), cos(πx/50)}. As we can see from Table 1.1, this interval of values for

δ leads to an optimal approximation that uses 3 intervals, (and has a max error of 13.91).

In Fig. 1.7(b) we can see how the number of operations used by the algorithm increases

significantly with δ, as explained.

1.4.3 Representation by irregular samples and coding

In the first section of this chapter we have recalled that every l∞ (1-link) signal approxima-

tion problem in an m-dimensional linear space can be reduced to a linear program. Thus, it

is not difficult to show that, the solution of the problem leads to the identification of a (not

necessarily unique) set of m + 1 samples that uniquely specify the optimal approximation.

This means that there exists a set of m + 1 samples (out of the, say, n) such that the optimal

approximation is only due to them, and removing all the other n−m− 1 samples does not

change the optimality of this approximation. We call these points pivot points, coherently

9Note that it is often computationally useful, in practice, to use shift-invariant basis.
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(a) Signal approximation with δ ∈ [14, 52].
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(b) Number of executed operations when approximating the signal with respect

to the value of δ ∈ [14, 52].

Figure 1.7: Example of an optimal l∞ signal approximation by means of mixed piecewise

linear and cosinusoidal expansions. Given the dotted signal shown in Fig 1.7(a), we have

computed the optimal approximation obtained choosing a value of δ in the interval [14, 52].
As we can see in Fig. 1.7(b), the number of operations increases with δ. In particular, it is

interesting to see the increase in the value of the number of multiplications for some specific

values of δ. For example, when δ reaches values near 47, we can see that the number of

multiplications notably increases. This is due to the fact that when δ changes from 46.7 to

46.8 the point p1(
←−g ) goes from 100.5 to 94.5, thus with a consequent increase in the value

of w1 and then in the dimension of the trellis.
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Figure 1.8: Example of signal subsampling by means of l∞ piecewise approximations. The

circles represent the pivots point of the optimal segmentation subdomains. Here we have

used the same electrocardiogram signal of Fig. 1.10, with the optimal approximation of Fig.

1.10(d) .

with the fact that they indeed corresponds with the the previously defined pivot points for

the case of straight line approximations.

Thus, l∞ approximation can also be seen as a tool for irregular signal subsampling,

in the sense that it automatically gives a subset of samples that bring the behavior of the

whole signal (with a confidence related to the m and δ values). In the case of piecewise

approximations, moreover, the study we have performed leads to the determination of a

minimal number of points and a domain partition that optimally describe the whole signal.

In Figure 1.8 we show an example of the result of this subsampling procedure when applied

to the electrocardiogram signal of Fig. 1.10 of the next section. It is clear however, that the

reconstruction of the approximation beyond the pivot points by using only these samples

can be performed if the partition is known.

These consideration is also important from the point of view of the problem of encod-

ing the obtained approximations. Consider in fact the problem of encoding the piecewise

approximation obtained for a given signal. Then, we first need to encode the partition of

the domain, and then we have to encode the shape of the approximation within each sub-

domain. Note that the encoding of the partition is not complicated, as it can be viewed

as the encoding of a sequence of integers. It is instead more interesting to focus on the

encoding of the linear approximations within the domains. As the optimal approximation

in an m-dimensional space is identified by the m coefficients, the problem of coding the
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approximation can be viewed as the problem of coding the m coefficients obtained as the

solution of the linear programming problem associated to the approximation problem. It

is important however to note that these coefficients are usually real values10, and thus the

encoding of these coefficients requires a quantization. In general, it is not easy to control the

additional approximation error introduced in any point when applying a quantization to the

coefficients of the optimal approximation, and it is not easy, in particular, to determine (and

encode!) the number of required bits for every coefficients, or the optimal rate allocation

for these coefficients. So, the encoding of the coefficients as a technique for the encoding

of the approximation is not an easy task, and it requires sophisticated techniques if we are

interested in keeping the error below a given threshold around the optimal one.

In this context, it is of particular interest to consider again the pivot points. Rather than

identifying the approximation by means of the m coefficients, we can also identify it with

the m+1 pivot points. Note that in practical situations, the pivot points, being samples of the

signal, are usually already available in a quantized form. So, if we encode the solution by

coding the pivot points, we do not incur any quantization problem, because data are typically

already quantized. Of course, for every pivot point we need to encode both the x coordinate

and the associated value of the signal. This may lead to poor coding performance in some

cases, but it is however important to consider that differential encoding can be used, which

at least reduces, from one pivot point to the other, the number of bits required to represent

the x coordinate.

A particular special case that should be considered with some care is the case of piece-

wise linear approximations, which is studied in detail in the next section from the algorith-

mic point of view. For the case of straight line approximations, it is worth noticing that

another possible technique of encoding can be used, which reveals to be of particular effi-

ciency. In order to encode a straight line in an interval, indeed, we can encode the value

that the line takes at the extremal positions of the domain. Even in this case, of course,

we have to consider the quantization problem. It is not difficult to show, however, that the

induced error within every point of the domain is a convex combination of the quantization

error introduced at the extremal points of the domain. So, by quantizing the values at the

extremal points, we have a precise bound on the error added to every internal point. For

this particular case, it is interesting to go a little further in the analysis of the quantization

error. Suppose the signal s is available in a quantized form, and suppose without loss of

generality that the quantization step is 1. Consider the problem when an approximation s̃ of

s with error threshold δ has to be encoded. Suppose an approximation f of s is constructed

so that ‖s − f‖∞ < δ. Now let f̃ be the quantized approximation, obtained by quantizing

the values of f at the extremal points of a domain. In this case, of course the quantization

error at the extremal points if at most 1/2 in absolute value and thus, as the induced error

in every point is a convex combination of quantization error at the extremal points, we have

that ‖f − f̃‖∞ ≤ 1/2. Now consider the reconstruction operation. For every point of the

domain, an approximation s̃ of the signal is obtained by quantizing the corresponding value

10Unless we restate the approximation problem in an integer-programming setting, which involves more com-

plicated techniques.
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of f̃ , and again we obtain that ‖s̃− f̃‖∞ ≤ 1/2. So, in conclusion we have

‖s− s̃‖∞ ≤ ‖s̃− f‖∞ + ‖f − f̃‖∞ + ‖f̃ − s̃‖∞ < δ + 1 (1.9)

But of course the difference between the quantized signals s and s̃ is an integer in every

point, so that ‖s− s̃‖∞ ≤ δ. This means that with the given strategy, it is only necessary to

approximate the signal with error strictly smaller than δ in order to recover in the decoding

phase an approximation with error not exceeding δ. Furthermore, for this particular case,

the encoding of the values on the extremal points of the domains can be performed using

differential encoding. Consider for example the optimal approximation shown in Figure

1.10(d) below. It is clear that there is considerable correlation between the value of the

approximating line at the end point of one subdomain with the value of the approximating

line in the starting point of the following subdomain. Thus, differential encoding can be

used for these extremal values, with some conspicuous saving in the rate spent.

1.5 Piecewise linear approximations

In the preceeding section we have described an algorithm for finding the optimal piece-

wise approximation when working in general piecewise linear spaces GT ; in that case we

considered that the approximation over every interval could be obtained by using the linear

programming approach and thus with average time proportional to the number of samples.

It is clear that if we are interested in piecewise linear approximations, the geometric method

exposed in section 1.3.1 must be preferred, as it gives much better performance.

Anyway, we show here that with a slight different version of the method exposed in sec-

tion 1.3.1 it is possible to improve the construction algorithms for the minimal and optimal

solutions. We have in fact the following result

Proposition 1.5.1 Given n sample of a signal and an l ≤ n, it is possible to find the optimal

straight line approximations of the sets of points Sj = {si}i=1...j with j ≤ l in at most O(l)
operations.

Proof. The proof is constructive, in the sense that we show how to find the approximations

of the sets Sj , j = 1 . . . l, in O(l). Considering the approximation of Sl with the geometrical

method of section 1.3.1, we note that the convex-hull is constructed in a progressive way,

i.e. by adding points from left to right and updating the polygon at every step. This means

that before finding the convex-hull of Sl we have found the convex-hull of every Sj with

j < l. Now, it is possible to see that the pivot points of Sj can be obtained from those of

Sj−1 in a number of operation Oj such that
∑

j Oj = O(l).
Consider the convex-hull Qj−1 with pivot vertices Aj−1, Bj−1 and Cj−1 and, for a

generic point P of a convex-hull Q, let x(P ) be the index m such that P = sm. Consider

now the new entering point sj (see Figure 1.9 for a graphical representation). We can

distinguish three cases:
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Aj = Aj−1 Bj = Bj−1

Cj = Cj−1

(a) Case 1

Aj

Aj−1

Bj

Bj−1

Cj

Cj−1

(b) Case 2

Aj

Aj−1

Bj

Bj−1

Cj

Cj−1

(c) Case 3

Figure 1.9: Finding the pivot points Aj , Bj and Cj of Qj after the insertion of the new point

sj . We can distinct three cases, every one being solvable with a number of operations that

is at most O(x(Cj)− x(Cj−2)).
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1. in the first case sj lies in the strip of plane delimited by the lines passing through the

pivot vertices of Qj−1. In this case the pivot points do not change and thus Oj = 0.

2. In the second case sj is outside the strip from the side determined by Cj−1. In this

case sj is the pivot Bj , Aj is the consecutive of sj in Qj and Cj has to be searched

to the right of Bj−1 in O(x(Cj)− x(Bj−1)) operations.

3. In the third case sj is outside the strip from the side determined by Aj−1 and Bj−1.

In this case sj is still the pivot Bj , Aj is the vertex that precedes sj in Qj and Cj has

to be searched at the right of Cj−1 in O(x(Cj)− x(Cj−1)) operations.

Considering that x(Cj−1) < x(Bj−1), we can see that the worst case is the third. Thus, in

the worst case we need a number of operations that is
∑

j O(x(Cj)− x(Cj−1)) and, using

the telescopic property, this is O(x(Cl)) = O(l) operations.

As we have said, this fact is very useful in the study of piecewise linear approximations.

In particular, we have the following result.

Proposition 1.5.2 For the case of piecewise linear approximations, Algorithms 5 and 6

require at most O(n) and O(n2) expected operations respectively.

Proof. The result is essentially a consequence of the fact that, from Proposition 1.5.1, it

is possible to avoid in Algorithms 5 (or better in Algorithm 4 used in Algorithm 5) and

6 the binary searches. In details, consider the construction of −→g (the same holds for ←−g ).

Using the progressive approximation construction explained above, we can scan the signal

by adding a point at every step, starting a new interval every time the error exceeds the given

threshold δ. This way the number of operation for every interval [pi−1(
−→g ), pi(

−→g )] is O(li)
and thus the total number of operation is O(n).

In the same way, consider the evaluation of the generic e(pl
i+1) in the second step of Al-

gorithm 6 (and refer to Fig. 1.6 for a graphical support). Instead of searching the minimum

of max(e(pr
i ), ε(p

r
i , p

l
i+1)) over r with a binary search (thus computing log2 wi approx-

imations) we can find all the values ε(pr
i , p

l
i+1), r = 1, . . . , wi, in O(wi + li+1) opera-

tions. In fact, we can first compute the approximation on [pwi

i , pl
i+1] and then add the points

pwi−1
i , pwi−2

i , . . . , p1
i on the left one by one, updating the convex-hull and the optimal so-

lution as explained above, for a total number of operation of O(wi + li+1). This leads to

a gain of a factor log wi for every pl
i+1 and thus to a gain of log n in the complexity of the

complete algorithm.

As an example of approximations by means of piecewise straight line functions, we

show in Fig. 1.10 the results when applying the algorithm to an electrocardiogram signal.

The signal samples are 16-bit signed integers (values from -32768 a 32767) and we have

set an error threshold δ = 2000. The algorithm has found a minimum necessary number of

10 segments; in Table 1.2 we can see the values of the partition points for the minimal ap-

proximations −→g and←−g and for the optimal one f , together with the relative approximation
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(a) Original signal,
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(b) Left-to-right approximation (−→g ),
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(c) Right-to-left approximation (←−g ),
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(d) Optimal approximation (f ).

Figure 1.10: Example of approximation of an electrochardiogram signal by means of piece-

wise straight line approximations.

errors and the associated computational complexity. Fig. 1.10 provides the original signal

and its approximations.

1.A Geometric properties of convex hulls

In this section we prove the statements given in section 1.3.1 on the geometrical properties

of the convex hull Q of a set of points S. For a better readability we restate lemmas 1 to 4

of section 1.3.1, as they are also necessary for the proof of Proposition 1.3.1. We recall the

used nomenclature. Given a set S = {si} of n points in the plane, we call Q its convex-hull.

If k is the number of sides of Q, we call pi, i = 1 . . . k, the vertices of Q in counterclockwise

order, with p1 the left-most one. For clarity, we add a point pk+1 = p1 and set m, m ≤ k, be

the integer such that pm is the right-most vertex. For i = 1 . . . k, we call li the side pipi+1
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p1 p2 p3 p4 p5 p6 p7 p8 p9 e
−→g 36.5 143.5 191.5 196.5 204.5 207.5 210.5 240.5 293.5 1984
←−g 15.5 128.5 176.5 194.5 201.5 206.5 209.5 212.5 248.5 1941

f 29.5 134.5 191.5 195.5 204.5 207.5 210.5 223.5 282.5 1631

Table 1.2: Partition points, errors and number of multiplications for the approximations −→g ,
←−g and f , when setting δ = 2000 in the approximation of the signal plotted in fig. 1.10(a).

The number of operations used for the three approximations is respectively about 6 · 103,

8 · 103 and 105

and v(li) the opposite vertex to the side li, i.e. the most distant vertex of Q from li in the

direction orthogonal to li (distances between vertices and sides will always be considered

in this sense in what follow). We say that v(li) is x-internal to li if the vertical line through

v(li) cuts li.

Lemma 1.A.1 Every side of the lower-hull has opposite vertex in the upper-hull and vicev-

ersa.
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Figure 1.11: Possible region for the opposite vertex of a lower-hull side

Proof. This fact is somehow obvious. Anyway, consider a side li of the lower hull, and

suppose pm is more distant from li than p1. This situation is shown in fig. 1.11(a) where

t′ is the line parallel to line t to which li belongs. By the definition of m, v(li) must lie at

the left of pm and, by the definition of opposite vertex, v(li) must lie above line t′. Thus,

it is easy to see that v(li) must lie in the portion of plane indicated with A. Any point pj ,

i < j < m, of the lower hull must instead lie in the B area. Thus the point v(li) belongs to



32 Chapter 1

pi

pi+1

pi+2

li

li+1

v(li+1)
v(li)

s

t

Figure 1.12: Relation between the opposite vertices of two consecutive sides.

the upper-hull11. If p1 is more distant from li than pm we obtain the equivalent symmetric

situation shown in Fig. 1.11(b) which leads to the same conclusion. For the upper-hull sides

we can operate symmetrically with a vertical flip and thus prove the converse.

Lemma 1.A.2 If we move from one side of the polygon to its consecutive in counterclock-

wise (ccw) direction, the respective opposite vertex, if it changes, moves in ccw direction

too.

Proof. We consider the generic sides li and li+1 with their opposite vertices as shown in

Fig. 1.12; lines s and t are parallel to li and li+1 respectively. It is clear that v(li+1) cannot

be farther than v(li) from li and must be at least as distant as v(li) from li+1. Thus v(li+1)
must lie in the shaded portion of plane between s and t, and thus it is positioned in ccw

direction with respect to v(li). Note that this do not mean that v(li+1) is the consecutive

vertex of v(li) (see Lemma 4).

Lemma 1.A.3 A vertex pj , 1 < j ≤ k, is the opposite vertex of a side li, i.e. pj = v(li), if

it is more distant from li than vertices pj−1 and pj+1.

Proof. This follows directly by the convexity of the convex-hull. If pj is more distant than

pj−1 and pj+1 from li and if there were a vertex pr more distant than pj , than the segment

pjpr would not be inside the convex-hull, which is absurd.

11Again remember that we consider p1 and pm to pertain both to upper- and lower-hull.
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Figure 1.13: The opposite vertex can be recognized considering only its neighbors.
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Figure 1.14: A reciprocity property between sides and opposite vertices.

Lemma 1.A.4 Given two consecutive sides li and li+1, their common vertex pi+1 is oppo-

site vertex of every side between v(li) and v(li+1) (in the path not containing li and li+1,

obviously).

Proof. Consider Fig. 1.14, where the position of the opposite vertices is justified and im-

posed by Lemma 2. Lines t and r are parallel to li and li+1 respectively. From the fact

that v(li) and v(li+1) are opposite vertices of li and li+1 and from the convexity of the

convex-hull, we can see that every side between v(li) and v(li+1) has a slope which is “in-

termediate” between the slopes of t and r. So, the generic side lj between v(li) and v(li+1)
has a slope which is intermediate between those of li and li+1; this means that its parallel s
through pi+1 leaves pi and pi+1 in the same halfplane and thus pi+1 is more distant than pi

and pi+2 from lj . From Lemma 3 this implies that pi+1 is opposite vertex of lj .
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Proof of Proposition 1.3.1

We start by demonstrating that there exists at least one side l whose opposite vertex v(l)
is x-internal to it. Suppose that every side li has its opposite vertex v(li) which is not x-

internal; then, clearly, v(l1) must be on the right of l1 and v(lm−1) must be on the left

of lm−1. So, there must exist an integer j < m such that v(lj−1) is on the right of lj−1

and v(lj) is on the left of lj . Then, from Lemma 4, pj is the opposite vertex to every side

between v(lj−1) and v(lj); the vertical line through pj must cut one of these sides and so

there exists a side whose opposite vertex, pj , is x-internal to it, so that the initial hypothesis

was inconsistent.

Now, suppose we have three points A, B and C of Q such that C is the x-internal

opposite vertex to the side AB. For these three points the optimal linear approximation is

easily proved to be the line r parallel to AB and equidistant from AB and C. The error

produced by this line in approximating s at every x coordinate xi is proportional to the

distance of the point si = (xi, s(xi)) from the line; the way r has been selected12 ensures

that A, B and C are the points of S mostly distant from r and so, the l∞ approximation

error of r is due to A, B and C. But for these three points r is optimal and so it is for the

whole set S, as A, B, C are peculiar vertices of the convex hull.

Finally we show that there cannot exist another triplet of points A′, B′ and C ′ such that

C ′ is x-internal to the side A′B′. Supposing these three points exist, they should lead to an

optimal solution r′. Calling e(t; q1, q2, q3) the error produced by the line t over the points

q1, q2 and q3 we should have

e(r′;A′, B′, C ′) ≥ e(r′;A,B,C) ≥ e(r;A,B,C) (1.10)

since r′ reaches its maximum error on A′, B′ and C ′, and r is optimum for A, B and C.

But symmetrically we have

e(r,A,B,C) ≥ e(r;A′, B′, C ′) ≥ e(r′;A′, B′, C ′). (1.11)

So the only possibility is that all these ≥ must be replaced by = and, consequently, r = r′,
which means that AB is parallel to A′B′, contrarily to the initial hypothesis that Q has no

parallel sides. This argument also proves that if Q has parallel sides13 the optimal solution

is still unique, even if this is not true for the pivot points.

12Consider that all the points of S lie in the strip of plane between the the line t passing through A and B and

its parallel t′ passing through C. The line r is exactly in the medium of this strip and the most distant points are

the ones lying on t and t′.
13In this case it is necessary to adjust some technical details such as the definition of opposite vertex, but the

main arguments and their consequences still hold.
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Distributed Source Coding

2.1 Introduction

In the last years an increasing attention has been paid to novel type of encoding techniques

that are of interest in the new emerging scenarios of multiuser communication. With the

advent of modern technology it is becoming more and more frequent to see different users

interested for example in accessing the same information or to have the same user have

access to an information source through different channels. This type of problems are stud-

ied under the name of network communication and the theoretical investigation on channel

capacities and rate distortion bounds for this type of scenarios are usually called multiuser

information theory or network information theory [40, 28].

One interesting topic revitalized recently in this field is Distributed Source Coding

(DSC). In its first and basic version, DSC is the study of the independent encoding of two

correlated sources that are to be transmitted to a common receiver. This problem was first

studied in a paper by Slepian and Wolf [89] in 1973; their famous result, together with the

results obtained in a successive paper by Wyner and Ziv [109], yield the development of

DSC as a whole branch of information theory. In this chapter we will introduce the basic

knowledge on DSC giving an overview of the underlying ideas and of the most important

theoretical results obtained in this field.

2.2 An example

Before discussing about DSC from the information theory point of view, it is interesting

to present the idea that is behind the theorems with the use of some simple examples. An

easy example of what we want to study is the following. Suppose a transmitter A wants to

communicate a number X to a receiver B. Suppose both transmitter and receiver know that

the number X is chosen at random uniformly in the range [0,999]. This means that A has to

communicate to B three decimal digits in order to send the value of X . Now, suppose the
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receiver already has an idea of the value of X in the sense that it knows a value Y with the

guarantee that X − 9 ≤ Y ≤ X . If Y was also available to the transmitter A, then it could

use this value to simplify the encoding of X . In fact, instead of sending the three required

digits for the encoding of X it could simply send one digit, i.e. the value of X − Y . This

type of encoding method is a predictive one, in the sense that the value of Y is used as a

prediction of X , and only the difference is encoded.

Now, suppose Y is not known to A. Then clearly it is not possible for A to send only

the one digit of the value of X − Y . Anyway, it is interesting to note that A does not

need to send all the three digits of X , as the last digit is sufficient. In fact, the decoder,

knowing the value of Y , can recover the value of X from its last digit. For example, suppose

Y = 236 and suppose the last digit of X is 3. Then, clearly, as Y ≤ X ≤ Y + 9,

we easily deduce that X = 243. With this simple example, we have introduced what is

known as the problem of source coding with side information at the decoder. Here the side

information is Y , the variable which is useful for the encoding of X , the latter being instead

the variable we are really interested in. Additionally, with this example we have shown that

the side information, even if it is only known to the decoder, allows to reduce the amount

of information that the encoder has to transmit. A rigorous and quantitative analysis of this

fact is contained in the Slepian-Wolf and Wyner-Ziv theorems that will be presented in the

next sections.

Consider now a slightly different setting. Suppose both A and B have to transmit their

information to a third user, say C. So, A has to communicate X to C while B has to

communicate Y , with the additional constraint that A and B cannot share their information

X and Y between them. Then, if A and B act as if they were alone, both of them will

need to send three digits to C. If instead they consider the real situation, they can use the

above presented method for a more efficient communication: B sends the value of Y using

three digits, while A sends only the last digit of X . This way, C can correctly recover

both X and Y . With this scheme, the total number of sent digits is four, three from B
and one from A. It is clear that the reversed scheme could also be used, with A sending

three digits and B only one. The interesting fact is that it is also possible to balance the

work and send two digits from both A and B and still allow C to recover both X and Y .

This can be done in the following way: B sends the first and the third digits of Y , while

A sends the second and the third digits of X . With our example, where X = 243 and

Y = 236, the information sent by B is ‘2?6’ and the information sent by A is ‘?43’. It is

not difficult to realize that for the receiver C this information, together with the constraint

X−9 ≤ Y ≤ X , is sufficient to recover that X = 243 and Y = 236. So, again, we see in a

simple example many interesting things. First of all, A and B are sending their information

to C using less digits than what they would need if they were alone, even if they cannot

share their information. Additionally, we see that the way the amount of information can

be split between the different users is not uniquely determined, as different configurations

are possible (we have seen in this example at least 3 different choices). This is another

important result which is treated in a rigorous way in the Slepian-Wolf theorem.
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2.3 Information theory

2.3.1 Problem setting and basic results

In this section we are interested in providing an overview of the DSC problem from the

information theoretic point of view, thus introducing the problem in a formal way and then

presenting the Slepian-Wolf and Wyner-Ziv results.

The first general situation we want to to consider is the situation where two correlated

sources X and Y are to be encoded and transmitted to a single receiver. For the sake

of simplicity we will consider here the case of discrete memoryless sources with a finite

alphabet, and we will specify when necessary the different hypotheses assumed in the stated

results.

Consider a situation as shown in Figure 2.1(a), and consider the problem of encoding X
and Y so as to send their values to the decoder. What we want to study is the amount of rate

that is required in order to have a lossless transmission, i.e., where the decoder can recover

without distortion the values of X and Y . Note that in this scheme the two encoders are

allowed to communicate between each other, and the hypothesis is that there is no limitation

in the amount of information they can share. So, in this case we can consider that both

Encoder 1 and 2 know the values of both X and Y . This means that from an information

theoretic point of view we have a situation where the two sources are to be encoded jointly

and sent to the decoder, the two encoders actually operating as one single encoder. In this

case, if we do not consider the channel communication problems, it does not make sense to

consider the rates spent individually by each encoder; it is very well known, instead, that

the minimum total rate that has to be spent in order to have a lossless encoding of X and Y
is their joint entropy H(X,Y ).

Decoder

Encoder 1

Encoder 2

X

Y

(a) Joint encoding

Decoder

Encoder 1

Encoder 2

X

Y

(b) Distributed encoding

Figure 2.1: Two different scenarios for a two-source problem.

Consider now the problem of encoding X and Y when the situation is as depicted in

Figure 2.1(b). In this case the two encoders cannot communicate each other and they have

to separately encode X and Y and send their codes to the common decoder. The problem

turns out to be what the admissible rates for lossless communication in this case. It is clear

that Encoders 1 and 2 can send X and Y using respectively a rate of H(X) and H(Y )
bits. The total amount of rate is H(X) + H(Y ) which is greater than H(X,Y ) under the
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hypothesis that X and Y are correlated. In this case, anyway, the decoder would receive

part of information in a redundant way. Suppose that the decoder decodes first the value

of Y ; then, the value of X , being correlated with Y , is already “partially known” and the

complete description received by Encoder 1 would be somehow redundant. Considering the

example we have presented in Section 2.2 we may argue that it is possible in some way to

reduce the rate for X , or even to reduce both the rates for X and Y in some flexible way.

The surprising result obtained by Sepian and Wolf [89] is that not only the rate for X and

Y can be actually smaller than H(X) and H(Y ), but that there is no penalty in this case

with respect to the case of Figure 2.1(a) in terms of total required rate. The only additional

constraint in this case is that there is a minimum amount of rate H(X|Y ) to be spent for X
and a minimum amount of rate H(Y |X) for Y , which represent the intuitive idea that every

encoder must send at least the amount of information of its own source that is not contained

in the other source. In particular, Slepian and Wolf gave the following theorem for the case

of memoryless sources.

Theorem 2.3.1 (Slepian-Wolf, 1973, [89]) Let two sources X and Y be such that (X1, Y1),
(X2, Y2), . . . are independent drawings of a pair of correlated random variables (X,Y ).
Then it is possible to independently encode the source X and the source Y at rates RX and

RY respectively, so that a common receiver will recover X and Y with arbitrarily small

probability of error, if and only if

RX ≥ H(X|Y ) (2.1)

RY ≥ H(Y |X) (2.2)

RX + RY ≥ H(X,Y ) (2.3)

The above theorem holds for memoryless sources as considered in the Slepian’ and

Wolf’s paper. Few years later Cover [27] extended the theorem to the more general case of

multiple stationary ergodic sources, giving a simple proof based on the asymptotic equipar-

tition property, i.e. the Shannon-McMillan-Breiman theorem [88, 67, 20]. In the case of

two sources the theorem is obviously reformulated by substituting entropies with entropy

rates in equations (2.1)-(2.3).

The set of all (RX , RY ) pairs satisfying equations (2.1)-(2.3) form the so-called achiev-

able region which is shown in Figure 2.2. It is important here to clarify that, as stated in

the theorem, we are considering rate pairs (RX , RY ) such that the decoder will recover X
and Y without loss with arbitrarily small probability of error. When we say this, we mean

that the encoding is considered to operate on blocks of n symbols, and that for sufficiently

large n the probability of having an error in the decoding phase can be made as small as we

want. Here it is worth noticing that in this sense there is a penalty in the case of distributed

encoding with respect the case of joint encoding. In the latter case, in fact, by using variable

length codes it is possible to encode the two sources X and Y to a total rate as close as
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Figure 2.2: Slepian-Wolf region.

desired to the joint entropy H(X,Y ) even with a probability of decoding error exactly zero.

This case, when the probability of error must be exactly zero, is usually referred to as zero-

error coding. While for the joint encoding of the sources the zero error region is the same

as the achievable region for vanishing error probability, for the distributed coding these two

regions are in general different. It is interesting to note that in a remark in [27] the author

asserts that the rate region identified by the Slepian-Wolf theorem is also achievable for the

zero error coding. It was in the following year that Witsenhausen [104] recognized the dif-

ferent nature of the zero-error problem, and the connection with graph theory, opening the

road to further research on zero-error distributed coding [7, 43, 3, 58, 59].

From the example presented in the previous section, it is surely already clear that the two

points labeled with A and B in Figure 2.2 are of particular interest. Consider for example

point A, which corresponds to the case when RY = H(Y ) and RX = H(X|Y ). Here the

two source X and Y are encoded in a completely different way; the source Y is encoded at

a rate equal to its own entropy, and thus it is encoded in a traditional way, while the source

X is encoded in a distributed fashion, given that Y is completely available at the decoder. In

this case, from the DSC point of view, we can focus on the encoding of X only, and we say

that X is encoded with side information at the decoder, the side information being clearly

Y . This particular problem is of great importance for different reasons. First of all, from

an information theoretic point of view, all the points lying on the segment AB in Figure 2.2

can be obtained by properly switching in time between points A and B, so that the problem

of source coding with side information at the decoder is in a sense a building block of the

general Slepian-Wolf problem. Second, this problem has its own importance as there are

many situations where there is actually only one source to be encoded with the availability

of side information at the decoder.
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Few years after the publication by Slepian and Wolf [89], Wyner and Ziv [109] obtained

an important result for the problem of lossy coding with side information at the decoder,

i.e., the case when the source X does not have to be perfectly recovered at the receiver, but

with a certain amount of distortion. For lossy source coding, as it is known, the theoretical

bounds are described through the computation of the rate distortion function [16, 45, 28].

We do not want to go into the theoretical details of rate distortion here, and we suggest

any interested reader to refer to [16] for this. Here we just recall that for the single source

problem, supposing that X is an i.i.d. source with marginal p.d.f. q(x) and d(x, x̂) is

the distortion measure between a reproduction symbol x̂ and the original value x, the rate

distortion function is given by

R(D) = min
p ∈P(D)

I(X; X̂) (2.4)

where where P(D) is the set of all conditional probability functions p(x̂|x) such that

Ex,x̂[d(x, x̂)] ≤ D, i.e. the expected value of the distortion is at most D. In the case

when there is side information Y available to both encoder and decoder the rate distortion

function simply changes to [16]

R(D) = min
p ∈P(D)

I(X; X̂|Y ) (2.5)

where P is now the set of all p(x̂|x, y) such that Ex,y,x̂[d(x, x̂)] ≤ D. Wyner and Ziv

obtained a characterization of the rate-distortion function when the side information Y is

only available at the decoder [109].

Theorem 2.3.2 (Wyner-Ziv, 1976, [109]) Let two sources X and Y be as in Theorem 2.3.1,

and let q(x, y) be their joint distribution. The rate distortion function for the encoding of X
with side information Y available to the decoder is

RWZ
X|Y (D) = inf

p ∈P(D)
[I(X;Z)− I(Y ;Z)] (2.6)

where Z is an auxiliary variable and P(D) is the set of all p(z|x) for which there exists a

function f such that Ex,y,z[d(x, f(y, z))] ≤ D.

A detailed analysis of the theorem is out of the scope of the present work and we only

add some comments that may be interesting for the reader. In addition to prove the above

theorem, in [109] the authors observe he following facts:

1. In the general case, for positive distortion values D there is a penalty in the rate

distortion bound when the side information is not available to the encoder with respect

to the case when it is. This means that the result of Slepian and Wolf does not extend

to the lossy case. It has been shown more recently [111], however, that the rate loss

is bounded by a quantity that equals half a bit per sample for the case of the quadratic

distortion d(x, x̂) = (x− x̂)2.
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2. Theorem 2.3.2 is valid in a broader setting rather than to the limited case of finite

alphabet sources [110]. In particular it is valid if X is a Gaussian source and Y =
X + N with N Gaussian and independent of X . In this particular case, under the

squared distortion criterion, the rate distortion function can be computed analytically

and one has

RWZ
X|Y (d) =

(

1

2
log

σ2
Nσ2

X

(σ2
N + σ2

X)d

)+

, (2.7)

where (·)+ is the positive part function, i.e. (x)+ = max{0, x}, σ2
X and σ2

N being the

variance of X and N respectively. In this particular case, the rate distortion function

is the same obtained for the case when Y is also available to the encoder. In this case

the Slepian-Wolf result does extend to the lossy case.

2.3.2 Additional research results

After the appearance of the papers by Slepian and Wolf and by Wyner and Ziv the field of

DSC has received attention by many researchers from the information theory community,

and much work still remains to be done. As we have said in the introduction, the two-

sources DSC problems specifically studied in [89, 109] can be considered in a more general

setting of multiuser information theory [40], so that many connection between this problem

and other ones have been studied and different variations on the original two-source prob-

lem have been considered. We will only give a brief overview of the results that are more

closely related to the setting considered in [89, 109], without pretending to give an exhaus-

tive survey of the whole field of source coding results in multiuser information theory.

The first contribution to the study of the Wyner-Ziv problem was given in [110] by

Wyner himself, who provided the extension of the results of [109] to the case of continuous

valued sources, as for example the case of Gaussian variables anticipated in [109] as cited

above. In [4], Ahlswede and Korner study the problem where X and Y are to be encoded

separately and the decoder is interested in the reconstruction of one source only. In [56]

the problem with lossy reconstruction of both X and Y is studied where one encoder only

has access to Y and the other one has access to X and to a rate constrained description

of Y (with possibly null rate), which may or not be also available to the decoder. This

problem includes all the previously discussed problems as special cases. Then, a slightly

different situation has been studied in [54], where Heegard and Berger address the problem

of lossy encoding of the source X for the case where the side information may or may not be

available to the decoder or, equivalently, there are two decoders, one with side information

Y available and one without. Following the direction of [4], in [17] Berger and Yeung deal

with the problem of distributed encoding of X and Y where X is coded losslessly while the

encoding for Y is instead lossy.

An important extension of the Wyner-Ziv problem for the case of Gaussian sources has

been given in [74]. In this paper, for Gaussian sources X and Y , the author studies the

problem of lossy encoding of X with partial side information at the decoder, i.e. a rate con-

strained description. This can also be seen as a generalization of [4] to the lossy case. Then,
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in [112] Zamir and Berger showed that in the low distortion regime there is no loss in the

total rate for the separate lossy encoding of both X and Y with respect to the case of joint

encoding. In [46] Gastpar proposes a generalization of the Wyner-Ziv problem to the case

of multiple sources finding new bounds on the achievable rate regions. Finally, an impor-

tant result has probably1 been obtained very recently in [99], where the authors completely

establish the achievable rate region for the lossy separate compression of two correlated

Gaussian sources. In particular, the authors show that an optimal encoding technique for

this problem is obtained by applying a quantization to the sources (on blocks of symbols)

and then applying a Slepian-Wolf encoding technique to the obtained quantization indexes.

This result, previously obtained in [112] only for the asymptotic low distortion case, is of

great importance as it gives an insight into the problem of constructing practical Wyner-Ziv

coding techniques that turn out to be optimal at least for the case of Gaussian sources. We

will indeed see in the next chapters that practical techniques using DSC principles actually

use this approach, i.e. splitting the Wyner-Ziv problem in the cascade of a quantization and

a Slepian-Wolf encoder.

The above listed contributions are part of the work done by researchers from the infor-

mation theory community in the study of achievable rates and rate distortion results for the

two terminal source problems initiated by Slepian and Wolf. On the other hand, some in-

teresting contribution have focused on the problem of practical implementation of Slepian-

Wolf and Wyner-Ziv coding techniques. One of the first works which has had a great impact

in the signal processing community is [76], where Pradhan et al. investigate the use of al-

gebraic channel codes for the problem of Slepian-Wolf encoding of correlated sources. The

paper is based on the strict relationship between Slepian-Wolf coding and channel coding,

first noticed by Wyner in [107], that is of great importance for the understanding of the

topics discussed in the next chapters. We thus briefly discuss this relationship with some

details, providing meaningful examples, in the next section.

2.4 DSC and channel coding

As we have anticipated in the previous section, there is a close connection between the

Slepian-Wolf problem and channel coding. This relation was first noticed by Wyner in [107]

where the author uses an interesting example of binary sources to present an intuitive proof

of the Slepian-Wolf problem. A more detailed description of this fact can be found in [113],

where nested linear/lattice codes are studied in the context of the dual problems of source

coding with side information at the decoder and channel coding with side information at the

encoder. An interesting study of practical construction of coding techniques for the problem

of coding with side information at the decoder using algebraic channel codes can be found

in [76]. The use of channel codes has then been studied for the more general Slepian-Wolf

problem with two encoders in [85], in [48] and with a deeper analysis in [77]. In this section

we assume the reader has familiarity with the basic theory of algebraic channel codes (see

1The paper is still under the peer reviewing process at the time this works is written.
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[18] for an introduction). Also, in this section we only consider binary codes, which are

obviously based on the operations defined on the binary alphabet (for this reason we will

write ‘+’ or ‘-’ without any distinction).

2.4.1 Coding with side information

The following example is taken from [76] and is now extensively used in non-information

theoretic communities in order to explain the main idea at the base of DSC. Let X be a 3-bits

binary word, with every bit independently and equiprobably distributed, in other words X
is uniformly distributed in the set {0, 1}3. Let than Y be a 3-bits word correlated with X so

that, given X , Y is uniformly distributed in the set of words whose Hamming distance from

X is at most 1. We want to consider the problem of encoding X when Y is available at the

decoder. In this simple example it is easy to see that H(X) = H(Y ) = 3, H(X|Y ) = 2 and

thus H(X,Y ) = 5. It is also clear that if Y was known at the encoder then the encoding

of X could be done with the use of 2 bits; as X and Y differ at most by 1 bit, there are

only 4 possible values of X for every value of Y . Now, for the Slepian-Wolf theorem we

know that if Y is available only at the decoder, then it is still possible to encode X with a

rate RX = 2 bits. The Slepian-Wolf theorem says that this rate is achievable in the sense

that, by encoding sufficiently large blocks of source outputs, the average rate can be made

as close to 2 bits as we want, with an arbitrarily small probability of error. In this case,

anyway, there is a simple solution that allows to encode every word X with exactly 2 bits

with probability of error exactly equal to zero. The procedure is the following. Partition the

set X = {0, 1}3 of all X outputs into four disjoint sets in the following way

X(0,0) = {(0, 0, 0), (1, 1, 1)}, X(0,1) = {(0, 0, 1), (1, 1, 0)}, (2.8)

X(1,0) = {(0, 1, 0), (1, 0, 1)}, X(1,1) = {(1, 0, 0), (0, 1, 1)}. (2.9)

Then, the encoding for X is simply done by specifying the index of the set, between the

above ones, that contains the actual output x. It is not difficult to verify that, whatever the

side information Y is, every subset Xs contains only one word with hamming distance at

most 1 from Y . For example, suppose the outcome of Y is y = (1, 1, 0) and the code for the

outcome x of X is (1, 1); then either x = (1, 0, 0) or x = (0, 1, 1), but only the first choice

is within distance 1 from Y . The trick here is that the partition of the set X is such that the

words in every subset have distance 3, so that at most one of them is within distance 1 from

Y .

It is now easier to see the connection with channel coding. Note that the set X(0,0) is

a (3,1) repetition code. The remaining sets are then the cosets induced by this code in the

space {0, 1}3, i.e. every set Xs 6=(0,0) is obtained by summing to the words of the set X(0,0) a

word of Hamming weight 1. Thus the sets Xs, s = (0, 1), (1, 0), (1, 1) are all the translated

of X(0,0) and they preserve thus the same distance properties between their words as X(0,0).

So, by using a binary algebraic code we have partitioned the space {0, 1}3 in four subsets

such that the words in every subset are well spaced. We now go back to the encoding of

X . Note that the code associated to a particular word x = (x0, x1, x2) can be algebraically
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computed as (x0 + x1, x0 + x2). Thus the code sx for a word x can be computed simply as

sT
x = HxT , where H is the matrix

H =

(

1 1 0
1 0 1

)

. (2.10)

This is exactly the parity check matrix of the (3,1) repetition code, whose generating matrix

is trivially G = (1, 1, 1). The result encoding of X corresponds thus to simply compute

the syndrome of the outcome words with respect to the (3,1) repetition code. The decoding

operation can then be performed similarly in an algebraic way. At the decoder in fact the

syndrome of y can be computed as sy = HyT and, by linearity, we have sy + sx =
HxT + HyT = H(x + y)T . So, the sum of sx and sy gives the syndrome of the binary

difference e between x and y, which we know to have Hamming weight equal to 1. This

means that in order to detect the difference e we only need to compute se = sx + sy and

check in the coset specified by se for the word of weight 1, known as the coset leader. Then

easily adding this coset leader to y we obtain x. In the example above where sx = (1, 1)
and y = (1, 1, 0), we have sy = (0, 1). So, se = (1, 0) and the coset leader of X(1,0) is

(0, 1, 0); so, x is correctly decoded as x = y + (0, 1, 0) = (1, 0, 0). Note that in this case

where the coset leader is known to have hamming weight equal to one, the syndrome is

always one of the columns of the matrix H and the coset leader is just the “indicator” vector

of that column.

The procedure that we have here described through the use of a simple example is actu-

ally valid in more general situations for the encoding of n-bit vectors when the correlation is

expressed in terms of the Hamming distance. The key point is that if a channel code is able

to correct d errors, then every two words in a coset have distance at least 2d + 1 and thus,

the syndrome of a word x is sufficient to recover the word if there is, as a side information

at the decoder, a word y which has distance at most d from x.

It is important now to point out that computing the syndrome of a word for a code C is

the same as computing the parity bits of another code C ′. For example, in the case consid-

ered above , the parity check matrix H of the (3,1) repetition code used for the computation

of the syndrome sx can be seen as the matrix used for the evaluation of the parity bits in a

(5,3) systematic code C ′ with generating matrix

G =





1 0 0 1 1
0 1 0 1 0
0 0 1 0 1



 . (2.11)

This code C ′ is systematic because the first three bits are the information bits, and

the remaining two bits, that are the parity bits, are exactly the same as the syndrome of

the information word for the (3,1) repetition code (note that the last two columns of G
are the row of H above). This gives again a new insight into the use of channel codes

for the problem of coding with side information at the decoder. The technique described

corresponds to say that instead of sending the whole word x we only send some parity bits

of a systematic code. At the decoder the information bits are available as side information
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y with at most one error. So, the parity bits are used at the decoder in order to correct y to

obtain x.

The above idea of using channel codes for this task can as well be applied in the case

when X and Y are binary memoryless sources correlated bit-by-bit in a probabilistic way

with δ = p(X = Y ). In this case, the code operates on words of n bits. For every positive

ǫ, if n is sufficiently large, the probability that X and Y differ by more than n(δ + ǫ) bits

can be made arbitrarily small. Thus, using a proper channel code, the encoding of X can be

performed using H(X|Y ) bits with arbitrarily small probability of error. Note that in this

case the probability of error cannot be made exactly zero, as there is always for example a

small but positive probability of having two n-bits words from X and Y that differ by all n
bits.

2.4.2 Two sources Slepian-Wolf problem

As we have explained in previous sections, the points of the Slepian-Wolf region on the seg-

ment between A and B in Figure 2.2 can be reached by properly multiplexing the encoding

of X with side information Y with the encoding of Y with side information X . Anyway, it

is possible to reach those points also operating a more symmetric encoding of the sources

so that both X and Y are encoded in a distributed fashion. The technique explained in the

previous section for using channel codes in the problem of coding with side information at

the decoder can be extended so as to deal with the more general Slepian-Wolf problem with

two sources, so as to balance the rate between the source X and the source Y . Similar ap-

proaches have been independently proposed for this problem in [85], in [77] and in [48]. In

order to explain this extension we report an example, similar to the one used in the previous

paragraph, which has been used for example in [77] and in [48]. In this case we consider

two source X and Y that are 7-bits words, again correlated in the sense that their Hamming

distance is at most 1.

Asymmetric coding

Consider first the problem of encoding X when Y is available at the decoder, or equiv-

alently, when 7 bits are used for the encoding of Y . In this case, we can use a technique

similar to the one proposed in the previous paragraph. We use the systematic Hamming

(7,3) code for the generation of the cosets. The generating matrix for this code is

G =









1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1









. (2.12)

Thus the code for a word x is obtained by computing its syndrome, i.e. sx = HxT , where

H =





0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 1 0 1



 . (2.13)
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At the decoder the syndrome sy of y is computed and used for the evaluation of the syn-

drome of the difference between x and y, i.e. se = sx + xy . Then the cosed leader

of the cosed indicated by se is summed to y to obtain x. For example, suppose x =
(1, 0, 1, 0, 0, 0, 1) and y = (1, 0, 1, 1, 0, 0, 1). Then the code for x is sT

x = HxT =
(1, 0, 0)T . At the decoder, the syndrome of y is sy = (0, 1, 1), so that se = sx + sy =
(1, 1, 1). This is the fourth column of H , so that x = y + (0, 0, 0, 1, 0, 0, 0) is correctly

recovered. So, 3 bits are spent for the encoding of a word x ,which is optimal since in this

case since H(X|Y ) = 3.

Symmetric coding

Now, consider the case where we want to encode both X and Y in a distributed fashion,

that is, instead of sending Y with 7 bits and X with 3 bits, we want to share the 10 bits

equally with 5 bits each source. Then a similar approach based on channel codes can be

used. Instead of using the Hamming code for the generation of cosets, we split the gener-

ating matrix G in two submatrices G1 and G2 by taking respectively the first two rows and

the last two rows of G, that is

G1 =

(

1 0 0 0 0 1 1
0 1 0 0 1 0 1

)

, G2 =

(

0 0 1 0 1 1 0
0 0 0 1 1 1 1

)

. (2.14)

This two matrices are used as generating matrices for two codes C1 and C2 whose parity

check matrices are

H1 =













0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
1 0 0 0 0 1 0
1 1 0 0 0 0 1













, H2 =













1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 0 1 0
0 0 0 1 0 0 1













. (2.15)

Now, the encoding of X and Y is done by using the code C1 for the generation of the cosets

for X and using C2 for the generation of the cosets for Y . So, for two words x and y we

compute the two syndromes sT
x = H1x

T and sT
y = H2y

T and send them to the decoder.

Here, given the pair of syndromes sx and sy it is possible to uniquely determine the words

x and y using the constraint that they differ by at most one bit.

In fact, suppose on the contrary that there are two different pairs of word (x′, y′) and

(x′′, y′′) satisfying the same syndromes and the same distance constraint. Then, as sx′ =
sx′′ , x′ + x′′ is a codeword for C1 and, for similar reasons, y′ + y′′ is a codeword for C2.

Thus, as C1 and C2 are subcodes of the Hamming code, (x′+x′′)+(y′+y′′) is a codeword

for the Hamming code. But (x′+x′′)+(y′+y′′) = (x′+y′)+(x′′+y′′) has at most weight

equal to 2, and as the Hamming code has distance 3, the only word with weight smaller than

3 is the null word. So, (x′ + x′′) = (y′ + y′′), but (x′ + x′′) is in C1 while (y′ + y′′) is in

C2. As the rows of G1 and the rows of G2 are independent (being G1 and G2 submatrices

of G), the only intersection of C1 and C2 is the null word, that is x′ = x′′ and y′ = y′′. This
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proves that the two syndromes sx and sy uniquely specify the two words x and y under the

given distance constraint. So, the encoding of X and Y can be performed in a symmetric

distributed fashion.

In this case the decoding process is more involved as it is necessary to jointly identify

the elements of the cosets specified by sx and sy . We show here how this can be done in this

case. The first important step is to reconstruct the cosets indicated by the syndromes; the

main idea is thus to identify two words of 7 bits that gives respectively a syndrome equal to

sx and a syndrome equal to sy . Let sx = (sx1, sx2, . . . , sx5) and sy = (sy1, sy2, . . . , sy5)
be the two syndromes. Given that the last five columns of H1 constitute an identity matrix,

consider words of seven bits with the first two components equal to zero. It is then clear that

the sx is the syndrome of the word α = (0, 0, sx1, sx2, . . . , sx5). But sx is the syndrome

of the original word x, and thus x and α are in the same coset for the code C1. Indeed, it is

easy to verify that H1α
T = sT

x = H1x
T . Given that words in the same coset always differ

for a codeword, we can say that x = α + w1 where w1 is a word of the code C1.

Then, with a very similar reasoning, considered that the first two columns of H2 together

with the last three ones constitute an identity matrix, it is easy to see that the sy is the

syndrome of the word β = (sy1, sy2, 0, 0, sy3, sy4, sy5), and thus that y and β are in the

same coset for C2, as H2β
T = sT

y = H2y
T . So we can write y = β+w2 where w2 is a word

of C2. Now let γ = α+β; we have γ = (x+w1)+(y+w2) = (x+y)+(w1+w2) = e+w
where e has Hamming weight at most 1 and w is a word of the Hamming code. So, as γ
is computable at the decoder, we can recover e and w by simply “decoding” γ with the

Hamming code, i.e. by using the parity matrix H . So, we compute HγT = H(e + w)T =
HeT , and as e has weight at most 1, HγT is either zero or one of the columns of H .

Thus, e is recovered as the indicator vector of that column. Finally, we can easily compute

H2x
T = H2(y + e)T = sy + H2e

T and now, considering the equations H1x
T = sx and

H2x
T = sy + H2e

T as a set of 10 equations in the 7 unknown components of x, we can

extract 7 independent equations and thus perfectly recover x. The same can be obviously

done for y.
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Distributed Video Coding I

3.1 Introduction

since a few years an increasing interest has been devoted to the application of the DSC

principles to different communication problems. One of the most studied applications by

researchers all over the world is certainly Distributed Video Coding (DVC). DVC is the

application of DSC principles to the problem of video coding. It has been proposed inde-

pendently by two different groups, namely Girod’s group, from the University of Stanford

[1], and Ramchandran’s group from the UC Berkeley [80]. Starting from these pioneering

works, DVC has now become an active field of research.

DVC was initially concerned with the application of the DSC ideas to the problem of en-

coding single video sequences, thus proposing alternative solutions to the traditional video

coding techniques mainly centered around the use of motion compensation and transform

coding. There are different motivations for the use of DSC techniques in this context. The

most important motivations are probably the shift of the computational complexity from the

encoder to the decoder. Another argument in favor of a DSC based approach for video cod-

ing is the native error robustness in presence of error-prone communications. In short, the

classic video coding techniques such as H.264/AVC (see [103, 82] and references therein for

details) adopt motion estimation at the encoder for motion compensated prediction encod-

ing of the information contained in the frames of a sequence. This leads to codecs with very

good rate distortion performance but at the cost of computationally complex encoders and

of fragility with respect to transmission errors over the channel. The computational com-

plexity of the encoder is high due to the motion search that is required in order to properly

perform predictive coding from frame to frame. Fragility then is due to insertion of errors

in the prediction loop, that causes drift. Therefore, the fragile source coding approach must

be followed by powerful channel coding for error resilience. In addition further processing

must be designed often at the receiver to adopt the most effective error concealment strat-

egy. DSC techniques are intrinsically based on the idea of exploiting redundancy without
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performing prediction in the encoding phase, and leaving to the decoder the problem of

deciphering the received codes using the correlation or redundancy between the sources.

For these reasons the use of DSC in single source video coding has appeared as a possi-

ble solution for a robust encoding with the possibility of flexibly allocating computational

complexity between encoder and decoder.

Other than for single source video coding, DVC is now intended as the application of

DSC in the more general problem of multi-source (or multi-view) video coding. In many

real world applications, such as surveillance networks or acquisition from camera arrays,

correlated video sources are to be transmitted from different points to a single receiver,

which is interested in recovering the whole set of video sequences. In the classic approach

to this type of scenarios, the sources are typically encoded individually without considering

the possibility of exploiting the correlation or, alternatively, when there is possibility of

communication between the cameras, intercamera prediction can be performed. In some

cases, anyway, it would be convenient to exploit the correlation between different views

without having to communicate data between cameras, so as to keep the acquisition devices

and the encoding process as simple as possible. In these cases, DSC theory comes in as a

natural approach to the problem, and DVC is thus in this context a natural application of

DSC to sources representing similar video sequences.

Despite this fact, the use of DSC techniques in multi-camera scenarios appears to be

much more complex than in the case of single camera systems. We will focus on this point

in the next chapter where we provide a high level study of the differences between single-

camera and multi-camera DVC systems and its relation with DSC. In this chapter we aim at

giving the basic knowledge on DVC, providing a survey of the original schemes proposed at

UC Berkeley and Stanford University. We further present more recent contributions made

by other research teams.

3.2 Applying DSC to video coding

Before presenting the specific schemes proposed by Stanford University and UC Berkeley

for DVC it is necessary to briefly introduce the basic DVC ideas.

Consider a video sequence composed by frames X1,X2, · · · ,XN , let R and C be the

number of rows in every frame Xi, and let Xi(r, c) represents pixel at location (r, c) in a

frame. It is clear that the frames of a video sequence are very redundant, i.e., a video is

a source with strong spatio-temporal memory. This happens in two senses that we would

like to distinguish. First the content of every frame is redundant in the sense that the pixels

Xi(r, c) for a fixed i and varying r and c are strongly correlated, meaning that if we model

the frames as stochastic processes, the random variables representing pixel colors that are

spatially close in the frame are correlated. Second, the visual content of neighboring frames

is very similar, the only difference being usually small movements of the objects, unless

a scene change, a flash or some similar “rare” event occurs. In general we will refer to

intra-correlation the spatial correlation and to inter-correlation as the temporal one.
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The fact that there is this double-face redundancy in a video is of course of extreme im-

portance to design effective encoders. By properly exploiting the intra- and inter-correlation,

it is possible to obtain high compression efficiency in the lossy case. The classic techniques

for video coding, starting from H.261 and MPEG1 until the most recent outcome such as

H.264/MPEG-4 AVC, exploit the correlation of a video sequence by combining the use of

transforms for removing the intra-correlation and the use of motion compensated prediction

for dealing with the inter-correlation. We are mostly interested here in this second aspect,

i.e. the motion compensated prediction between frames. In the basic situation we can con-

sider the problem of encoding a frame Xi when the previous frame Xi−1 has already been

encoded and it is available in an approximated form, say as X̃i−1, at the decoder. In this

case, what a classic video coding technique would do is to estimate the motion field Mi

between the frame X̃i−1 and Xi; then, by “applying” this motion to the frame X̃i−1 obtain

an approximation of Xi, say X ′
i = Mi(X̃i−1). The encoding of Xi is then performed us-

ing the prediction, and instead of encoding Xi, the motion field Mi and the prediction error

ei = Xi−Mi(X̃i−1) are sent. The encoding of ei is usually achieved by transform coding so

as to exploit the remaining intra-correlation. This represents only a very coarse prespective

of modern video codecs, as an accurate fine-tuning of tools is necessary to achieve optimal

Rate-Distortion performance as suggested by different standards (MPEG1/2/4). Neverthe-

less, the main point for the purpose of the present chapter is sufficiently described in that

form: in classic video coding standards a frame is encoded by applying motion compensated

prediction from previously encoded frames. This operation is responsible for the exploita-

tion of the source temporal correlation and is usually a somehow complex operation for

the encoder. At the decoder, instead, processing is rather simple. The motion field, received

from the encoder is applied to the available reference frame (or frames) and used to generate

the prediction, which is then successively updated with the received prediction error.

The use of DSC for the problem of video coding is based on the idea that we can consider

the frames (or portions of frames) of a video sequence as different correlated sources. So,

when we have to encode a frame Xi after having already encoded the frame Xi−1 as X̃i−1,

we can consider that X̃i−1 is already available at the decoder and thus, invoking Slepian-

Wolf’ and Wyner-Ziv’ results, we can consider that we could encode Xi without actually

using, and not even knowing, X̃i−1 in the encoding phase. This is the very basic idea under

DVC, which has then to be further refined in order to lead to concrete coding schemes.

Note that the DSC scenario considered in this case is the problem of source coding with

side information at the decoder and, for video sequences, one is usually interested in lossy

compression. For this reason DVC is often also referred to as Wyner-Ziv (WZ) coding of

video and, more generally, we call Wyner-Ziv coding whatever encoding technique based on

the presence of side information at the decoder. By extension, we will often refer to the bits

associated to a Wyner-Ziv encoding as the Wyner-Ziv bits and we will often refer to the part

of video already available at the decoder as Side Information (SI), in some cases referring to

a whole frame or in other cases to portions of frames or even to groups of frames. We will

clarify this fact in the next chapter where a detailed study of the correspondences between

DSC and DVC is provided. In the mean-time we will make a somehow not rigorous use of
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Parity Bits of DCT blocks and CRC of Wyner−Ziv frames

Key−Frame Conventionally Encoded
DecoderEncoder

Motion Compensation
using parity bits

and CRC

Figure 3.1: Scheme of frame encoding and decoding in PRISM.

these terms, their meaning being clear from the context.

3.3 PRISM codec

In this section we will describe the so called PRISM codec, proposed by Puri and Ram-

chandran [80] in 2002. We focus only on a small group of frames, the encoding process

can then be clearly iterated along a video sequence so as to cope with whatever number of

frames. Let again X1,X2, . . . ,Xn be the frames. At a very coarse level we can say that

the first frame is encoded in a conventional way, using standard techniques for image cod-

ing, and then the remaining frames are encoded in a distributed fashion. For every frame, a

Wynner-Ziv encoding is applied based on the presence of the previous frame at the decoder.

This general scheme is represented in Figure 3.1, where some additional details of the actual

technique used for the WZ frames are anticipated. We now proceed to a detailed description

of the operations performed by the encoder and by the decoder.

The first frame X1 is encoded in an intra-mode using for example a block based ap-

proach similar to the ones used in JPEG [100]. This means that the frame is divided for

example in 8 × 8 pixel blocks, a DCT is applied on every block and the coefficients are

quantized and then entropy encoded using a run-amplitude (RA) code. For the following

frames block based process is considered again. The generic frame Xi is divided in 8 × 8
blocks; let Xk

i be the k-th block, and let Xk
i (r, c) be its pixels. Then every block undergoes

the following processing.

1. every block is analyzed so as to estimate its correlation with the content present in
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the previous frame: in order to keep the computational complexity of the encoder as

low as possible, no motion search is operated; the generic block Xk
i is compared with

Xk
i−1 and the sum of absolute differences is computed, i.e., ǫk

i =
∑

r,c |X
k
i (r, c) −

Xk
i−1(r, c)|.

2. Depending on the value of ǫk
i every block belongs to either of the three following

groups:

(a) if ǫk
i is smaller than a given threshold, say ǫk

i ≤ ǫmin, than block Xk
i is classified

as a SKIP block;

(b) if ǫk
i is larger than a given threshold, say ǫk

i ≥ ǫmax, than block Xk
i is classified

as an INTRA block;

(c) otherwise, block Xk
i is classified as a WZ block. WZ blocks are further divided

in 16 different classes C1, C2, . . . , C16, depending on their ǫk
i value, so that the

encoder can operate differently on blocks with different level of correlation.

3. A flag is transmitted for conveying the nature of the block (SKIP/INTRA/WZ). If

Xk
i is a SKIP block, no further information is encoded. SKIP mode means that the

decoder replaces the block with the same position block in the previous frame. If Xk
i

is an INTRA block, it is encoded in a traditional way using a DCT based approach

with a RA code, as in JPEG. The decoder can thus decode this type of blocks without

any reference to other frames. If Xk
i is a WZ block, instead, the index specifying

the associated class is added. The block is then encoded as described below (see also

Figure 3.2).

Encoding procedure for the WZ blocks

1. The DCT of the block is computed. Let X̂k
i (f), f = 1, 2, . . . , 64 be the coefficients

of the DCT when assuming a zig-zag scan ordering as typically done in JPEG;

2. The high frequency coefficients X̂k
i (f), f = 16, . . . , 64 are quantized and encoded

using a RA code, according to the JPEG standard. The quantization of these coeffi-

cients clearly depends on the desired quality for the reconstructed video;

3. The remaining low pass coefficients are actually encoded in a WZ fashion in the

following way

(a) A first quantization is applied to the coefficients depending on the class of the

block, i.e. a specific quantization parameter q(j, f) is used for the coefficient

X̂k
i (f) if block Xk

i is in the class Cj . Let qX̂
k
i (f) = ⌊X̂k

i (f)/q(j, f)⌋ be the

quantized coefficient. The 16× 15 quantization matrix values q(j, f) is fixed at

the encoding phase and is constructed a priori by properly training the codec on

test sequences as clarified later.
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(b) The last 2 bits of the binary representation of the quantized coefficients, for a

total of 30 bits, are extracted and fed to a systematic trellis code with rate 2/3.

The resulting 15 parity bits are the syndrome of the 15 coefficients, i.e. the

actual WZ bits.

(c) A 16-bit CRC is also computed from the 15 quantized coefficients. The resulting

16 bits form the hash of the block and are used in the decoding phase in order

to detect the correct WZ decoding of the block.

(d) If the quantization levels q(j, f) used for the low frequency coefficients are too

large for the required quality, additional refinement bits will be sent separately.

This basically corresponds to quantizing at a finer level the coefficients X̂k
i and

sending the missing bits with a traditional encoding technique.

Classic RA encoding

Coefficients
CRC

16 bits

Syndrome 15 bits
Trellis code

30 LS bits

Figure 3.2: Encoding procedure for the WZ blocks in PRISM.

The above explained procedure for the encoding of the WZ frames is not completely

specified since it is not yet clear how the the values of the used parameters are established.

We refer here to the thresholds ǫmin and ǫmax, to the quantization parameters q(i, j) and

even to how the Cj , j = 1, . . . , 16 classes are determined based on the value of ǫk
i . As we

have anticipated for the quantization levels, all the values of the parameters are established

by properly training the codec on test video sequences. This is due to the fact that the level

of correlation between the different blocks in the frames is responsible for the success or the

failure of the decoding process. It is important to properly set ǫmax so that only the blocks

that are sufficiently correlated with the previous frame are encoded in a WZ way, and to

set ǫmin so that blocks very similar to the homologous blocks in the previous frame are

not unnecessarily encoded with a complicated WZ procedure. Thus the classes Cj and the

quantization parameters q(j, f) are important because the syndrome extracted from the DCT
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coefficients depends on the applied quantization. The last two bits of a quantized coefficient,

in fact, can only identify the value of the original unquantized coefficient X̂k
i (f) modulo

4q(j, f). In order to have the syndrome uniquely identify the quantized coefficient qX̂
k
i (f)

when a side information Y is available at the decoder, it is necessary to have |Y −X̂k
i (f)| <

2q(j, f). So, the quantization parameter q(j, f) must be chosen so as to be at least half the

value of the correlation error between the coefficient to be encoded and the side information

available at the decoder.

So, in order to properly set the quantization parameters it is necessary to partially simu-

late on test sequences the operations performed in the encoding and in the decoding process

and find the average correlation error between the WZ coefficients and the side information,

depending on the value of ǫk
i , which is the only measure of correlation available during the

encoding process. For this reason it is now important to present the decoding process, the

procedure for the tuning of the parameters being easily understood later. Of course it is not

necessary to describe here the decoding operations for the SKIP and the INTRA blocks, so

that we only expose the decoding for the WZ blocks.

Decoding procedure for WZ blocks

The decoding for a block Xk
i is performed by combining a sort of motion estimation

and a WZ decoding in the following way:

1. For a WZ block many different blocks are tested as side information. A sliding win-

dow selects candidates SI blocks in positions around the position of the given block

but in the previous frame. Let us call Y k
i (n), n = 1, 2, . . . the candidate predictors

for the block Xk
i .

2. Every candidate block is used as SI; it is transformed and quantized using the specific

quantizer for the class containing Xk
i (that is written in the header of the code for that

block)

3. The two least significant bits (the modulo-4 value) of the first 15 low pass coefficients

are extracted and used as side information for a WZ decoding, where the channel code

is the trellis code used in the encoding phase and the parity bits are the syndrome bits

received from the encoder. A least square decoding if performed so as to minimize

the squared error between the decoded sequence of modulo-4 values and the modulo-

4 values of the SI coefficients. These 15 modulo-4 values are then used to replace the

two least significant bits of the SI coefficients.

4. The CRC-16 is computed on the so obtained “corrected” side information coeffi-

cients. If the CRC matches the decoding is considered correct and the procedure

stops, otherwise another block is selected from the previous frame and the process is

repeated from step 2. If no available SI allows to match the CRC there is no way to

reconstruct the 15 missing coefficients and a concealment strategy must be adopted.
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5. When the procedure for low frequency coefficients is terminated, the high frequency

coefficients are decoder in a traditional mode and inserted to fill the DCT transform

of block. The inverse transform is then applied to obtain the pixel values of the block.

The procedure is thus based on the idea of trying different possible blocks as SI for the

current block to be decoded. The channel decoding operation is performed on every possible

candidate SI block and the CRC is used as a hard decision for the effective correctness of

the decoding process. If the quantization level and the threshold are well tuned, the hope is

that at least a good predictor should be available and that the process will correctly recover

the quantized WZ coefficients when this predictor is picked up. When wrong predictors

are tested, instead, after the channel decoding, the probability that the CRC will match

with the one received by the encoder if the reconstructed quantized coefficients are wrong

is very small. This idea of testing different predictors is an operation very similar to the

motion estimation usually performed at the encoder, with the difference that here the task is

performed by the decoder.

Now, it is easier to clarify how the training stage for the tuning of the parameters oper-

ates. Different video sequences are tested and the statistical correlation between the value

of ǫk
i for a given block and the optimal prediction error after motion compensation is stud-

ied. This way, good choices for ǫmin and ǫmax can be set and a map from the value of ǫk
i

to values of the quantization parameters q(j, f) can be constructed so as to ensure that the

decoding process will be succesful with high probability.

3.4 Stanford solution

In this section we consider the architecture proposed by the Stanford group in [1]. With

respect to the PRISM codec considered in the previous section the Stanford architecture

adopts different choices for the application of WZ principles to the case of video sequences.

The main difference is that the frames of the sequence are considered as a whole, and the WZ

coding is applied to a whole frame and not to single blocks. So we can actually identify some

WZ frames that are completely encoded in a WZ way, without differentiating the processing

on a block to block basis. A basic idea is in fact to estimate the motion at the decoder and

create an entire side information frame, even before considering the WZ decoding, and

thus the use of the parity bits. So, the technique used by PRISM of embedding the motion

estimation for every block with its own WZ decoding is changed here to the creation of side

information for the whole frame, using motion, and then WZ decoding of this frame.

The coarse idea is to split the frames of the sequence at the encoder dividing them

in two groups. Let again X1,X2, . . . be the frames; in the simpler version of the codec,

odd-indexed frames X1,X3 . . . are encoded in an intra-mode conventional way, that is as a

sequence of images, while even indexed frames X2,X4 . . . are encoded in a WZ fashion.

At the decoder, the intra-coded frames are used in order to create an approximation for the

WZ frames by motion compensated interpolation. Then, the parity bits are used in order to

“correct” these predictions and recover the frames. This idea is graphically represented in
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Figure 3.3.
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Figure 3.3: Scheme of frame encoding and decoding in the Stanford approach.

It is important to consider that this is only a very general description of the general idea

and that the actual details for the design of such a system are not well described even in [1].

Many research papers have been devoted to the study of this DVC system and the description

we give in the following part of this section is obtained by combining interpretations of

details from different authors. Also, it is necessary to clarify in advance one particular

characteristic of this architecture, which is the need of a feedback channel from the decoder

to the encoder. This feedback channel is used in the process of WZ decoding in order to

request more parity bits from the encoder if the received ones are not sufficient to properly

decode the source. Even if from a theoretical point of view this feedback channel could be

eventually removed by introducing higher functionalities at the encoder side, up to now no

clear and simple solution is available from the literature for this task. We will discuss later

some related problems and we will consider in the next chapter the use of feedback channels

in general DVC problems.

We thus proceed to a more specific description of the encoding operations for the WZ

frames and of the associated decoding process.

Encoding of WZ frames

The encoding of a WZ frame, say X2n, is performed following list of operations re-

ported below:

1. The pixels of the frames are properly quantized to say 2M levels. Let qX2n be the

quantized frame and let qX
i
2n(r, c) be the i-th bit of the binary representation of

qX2n(r, c).
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2. The bits of the binary representations of the quantized values qX2n(r, c) are juxta-

posed to form in bit-planes; let qX
i
2n be the i-th bitplane. Every bitplane is fed into a

turbo encoder and its resulting parity bits Si are stored in a buffer.

The encoding procedure as shown above is notably simple. It is worth noticing here that

this scheme is usually referred to as “Pixel Domain” WZ coding, because of the fact that the

quantization and WZ encoding is applied directly to the pixel values. The same scheme can

be applied however with the variation of having a transform applied before quantization.

We now present the decoding operation for the WZ frames

Decoding of WZ frames

The decoding process for a WZ frame X2n is as follows

1. Let X ′
2n−1 and X ′

2n+1 be the two reconstructed key frames adjacent to X2n. By

applying a motion compensated interpolation, X ′
2n−1 and X ′

2n+1 are used for the

construction of an approximation Y2n of X2n, which is the Side Information for the

WZ decoding.

2. The SI is assumed to be a noisy version of the original frame, i.e., for every pixel

it is assumed that Y2n(r, c) = X2n(r, c) + N(r, c) where N is a white noise. This

noise is assumed to have a Laplacian distribution with parameter α which has to be

estimated or to be somehow known to the decoder. With this model, given Y only at

the decoder, it is possible to assign a probability to the values X2n(r, c) as

P [X2n(r, c) = x] =
1

2S
α exp (−α|x− Y2n(r, c)|) (3.1)

where S is a rescaling factor due to the fact that the pixel values are always clipped

in some range (and thus the Laplacian is in reality a clipped Laplacian).

3. The actual WZ decoding operates bitplane-by-bitplane. Consider the first bitplane,

i.e., the most significant bit. With the probabilistic model described above it is possi-

ble to compute the probability that the first bit of every quantized coefficient is 0 or

1.

4. These probabilities are fed to the turbo decoder as “channel values” of the informa-

tion bits. The turbo decoder, using a feedback channel asks for parity bits from the

encoder. The encoder applies a puncturing on the parity bits and sends a first set of

them. The turbo decoder tries to decode the channel values with these parity bits to

recover the bitplane qX
i
2n.

5. If the turbo decoding process fails, more parity bits are requested through the feed-

back channel, and the process repeat until the turbo decoder is able to correctly re-

cover the bitplane.
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6. When the first g ≥ 1 bitplanes have been reconstructed, the conditional probabilities

p[X2n(r, c) = x|qX
i
2n, . . . ,q Xg

2n] are used to compute the probabilities for the g+1-

th bitplane, and the process is repeated from step 4.

7. After all bitplanes of qX2n have been recovered, the best estimate X ′
2n of X2n is

constructed by taking for every pixel the expected value

X ′
2n(r, c) = E[X2n(r, c)|Y2n(r, c),q X2n(r, c)] (3.2)

under the probabilistic model introduced above.

3.5 Additional developments

In the previous sections the first proposed architectures for practical DVC systems have

been discussed. As we have anticipated, after the appearance of the works by Stanford

University and UC Berkeley many researchers have put efforts in the development of new

ideas that would allow a practical system to reach better performance. It is important to

clarify that the approaches in [1, 80] have substantially dominated the DVC panorama, as

they are still considered the starting point for many works in the field. So, many of the new

ideas that have been proposed in the last four years have focused on the development of

new techniques and architectural blocks for the improvement of the systems in [1, 80] and

on possible variations or combinations of structural blocks from these two main schemes.

In this section an overview of the new development obtained for the case of single camera

systems is given. These latest developments are clustered in different sets in order to point

out the different aspects of DVC that are being studied by the scientific community.

3.5.1 Side Information quality improvements

A great deal of work has been devoted to the improvement in the generation of the Side In-

formation. Obviously the quality of the Side Information is strongly related with the quality

of the motion estimation that is available to the decoder. This two aspects are strongly re-

lated. So, in order to improve the quality of the side information different methods have

been proposed in the literature that are based on improving the quality of the motion esti-

mation at the decoder. For the Stanford approach, for example, one of the first proposals

came for the Stanford group itself, with the publication of [2], where the use of hashes is

proposed for facilitating the motion estimation task performed at the decoder. The main

idea is to send, for the WZ frames, not only parity bits but also a low-rate coarse description

of the blocks of the frames. This description can be used by the decoder in order to find

a better estimate of the motion, or even to extract a motion field and a prediction for the

WZ frame only from past frames, without any need to wait for a successive intra coded

frame. Successive contributions in the direction of better SI constructions in the Stanford

scheme was proposed in [11]. In this paper a smoothing post-processing operation on the

motion field extracted from two consecutive key frames is shown to improve the quality of
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the estimation for the WZ frame in between them. Another approach along this line was

presented in [61] where the use of mesh-based motion compensated interpolation is shown

to give better results than simple block matching. Finally, in [57] a sub-pel motion estima-

tion technique has been used to provide slightly better performance than integer-pel one. In

[12] and [9] the authors present two techniques based on the idea of iterating the Wyner-Ziv

decoding operation with successive refinement of the Side Information. In a sense, the idea

is to take advantage of the increased information available on a WZ frame after a first stage

WZ decoding in order to create a better estimation of the motion.

3.5.2 Correlation Noise Modeling and Rate Allocation

In the decoding process of DVC systems, an important role is played by the assumed model

of correlation between the available SI and the original WZ frame. In [1] the difference

between the SI frame and the WZ one is assumed to have a Laplacian distribution with zero

mean and a fixed variance. It was not clear however how the variance of the Laplacian

should be set so as to reach the best performance, and in practice fixed values optimally

computed off-line for the sequences were used in the first DVC implementations. As the

variance of the noise affect the probabilities that are fed into the turbo decoder, it is of great

importance to set its value in a proper way. This means that an accurate study of the statis-

tical modeling of the correlation noise is important in order to achieve good performance.

In [96] a non-Laplacian distribution is used and the effect of quantization on the key frames

on the noise statistics is studied. In [102] and [71] a non-stationary model of the noise is

proposed that consider the combination of Laplacian and other particular ditributions. In

[35], instead, a non stationary Laplacian model for the noise is proposed, where the vari-

ance of the distribution is tuned for every point of the WZ frame depending on a measure of

confidence extracted by the motion compensated difference between the key frames. This

contribution is described in detail in Section 4.3 of this work. Further developments in this

direction were provided in [21] and [23] where a detailed study of adaptive models at dif-

ferent resolutions is proposed. An interesting alternative idea to the use of a model for the

correlation error between SI and original WZ frame has been adopted in [73]. Here there

is no construction of SI from the key frames and both frames are used as references with a

multi-hypothesis technique in order to take better advantage of the contained information.

In particular this approach leads to better performance in handling covered and uncovered

regions. For the approach proposed by Berkeley a similar problem must be considered. In

this case, having a good model for the correlation noise is important in order to properly

quantize the blocks in the encoding phase. In the original scheme proposed in [80] a train-

ing stage was used in order to create a map of the quantizers to be used for every block of

the frame depending on a coarse measure of correlation extracted at the encoder. In [10]

a first study of the statistics of the correlation noise is proposed in order to suppress the

training stage. Note that in the case of the PRISM codec, the modeling of the noise actually

directly impact the rate to be spent in the encoding phase. This relates the modeling of the

correlation noise to the allocation of the rate in the encoding phase. In fact, in a DVC system
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one of the most difficult problems to be solved is the allocation of the required rate for a

given aimed quality of the reconstructed video sequence. In fact, the use of channel codes

for the correction of the SI makes it difficult to freely tune the quality of the decoded frame

depending on the rate spent in the Wyner-Ziv code. The typical problem is that there is a

required amount of parity bits that are necessary for the correction of the SI; if fewer parity

bits are allocated by the encoder, then the decoder cannot recover the original data. The

particularly annoying thing is that the degradation is not graceful. If the parity bits are not

sufficient they are almost useless and a very poor reconstruction is obtained at the decoder.

So, it is very important to correctly estimate at the encoder the amount of rate required. In

the Stanford approach this problem is masked by the presence of the feedback channel. But

in case a feedback channel is not available, in order to have the scheme in [1] work, it is

necessary to allocate the rate at the encoder. Very few works have been done along this line.

A simple idea for the rate allocation is proposed in [8] while in [22] a detailed study of the

use of the feedback channel in the Stanford scheme is provided.

3.5.3 Architectural Developments

Finally, a set of developments in the field of single camera DVC schemes have been pro-

posed in the literature that are not strictly based on the improvement of the performance of

the codecs proposed by Stanford and Berkeley but better on variations on these schemes. In

[93] Tagliasacchi et al. proposed the use of intra-coded blocks in a Stanford based approach.

In a few words, the idea is to encode in a conventional way the blocks of the WZ frames

for which a good prediction is not possible at the decoder due, for example, to occlusions.

Two approaches for the selection of the blocks to be encoded in a conventional way are

presented, one with decision at the encoder side and one with decision at the decoder side,

the latter being possible only when there is a feedback channel of course. In [44] Fowler

et al. propose a variation to the PRISM codec based on a wavelet decomposition of the

video sequence rather than a jpeg-like block partitioning. In [94] then, a new proposal for

exploiting the spatial redundancy is presented that does not use transform coding but ex-

ploit the correlation between neighboring pixels in the WZ decoding phase, modifying the

statistical model used for the bit probabilities by using the intra-frame memory. In [66] the

idea of sending hashes for a better motion estimation at the decoder in the Stanford scheme

is further developed by sending a low resolution of the video encoded with a zero-motion

H.264 codec. This is also related to the use of DVC techniques for scalable video coding,

which has also been discussed, for example in [92] and in [86].
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Distributed Video Coding II

4.1 Introduction

After having described the first schemes for DVC proposed in the literature, we here develop

an in-depth analysis of the problem of DVC from a structural point of view. In particular, we

are interested in providing here an analysis of the underlying problems in DVC and of the

fundamental structure of DVC systems. A detailed study of the relation and differences in

the hypothesis between DSC and DVC is proposed, with the identification of an important

component that we call correlation issue. We will show that this correlation issue is strongly

related to the motivations for the use of DVC for single- and multi-camera systems, and to

the architectural constraints that need to be considered for both cases.

As detailed in the previous chapter, in the case of single camera systems we consider a

sequence as the composition of different sources, i.e., every frame is considered as a dif-

ferent source. We are then interested in encoding the frames independently in a distributed

fashion while decoding them jointly in order to take advantage of the existing correlation

between frames. In a multi-camera system, instead, we actually have different sources and

we want to encode them independently, by taking advantage of the correlation between the

source, in order to improve the compression performance, but without having any commu-

nication link between the cameras. In the case of multi-camera systems, we may have some

cameras operating in a distributed fashion while some other cameras operate with a classic

approach.

4.2 From theory to practice

In this section we want to point out some important base-level considerations that are es-

sential in order to discuss about structural issues in the design of a distributed video coding

0This chapter includes research results published in [35].
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system. As already clarified, Distributed Video Coding is the application of Distributed

Source Coding (DSC) theory to the problem of coding video sources. It is clear that when-

ever a theory is applied to a concrete setting there are issues to be considered, and this is

the case for DVC too. Without going too much into details here, we want to clarify some

of the most important differences between the underlying hypothesis under which DSC the-

ory was developed and the real situations where we want to study the use of DVC as a

new framework to the problem of video coding. Primarily we are interested in applying

DVC to different settings that we can divide in two main families, namely single-camera

systems and multi-camera systems. The application of DVC to these two scenarios has dif-

ferent motivations and the problems encountered in the design of such systems are different

though strongly related to the motivations for which DVC is used. So, it is essential to first

focus on the motivations for the use of DVC techniques in the case of single-camera and

multi-camera systems.

4.2.1 Motivations for DVC

There are different reasons why distributed source coding techniques are of interest in the

case of video coding. In order to have these motivations clear, it is necessary to consider

separately the different scenarios, namely single-camera systems and multi-camera systems.

The motivations are mainly the following:

Single-camera systems:

• Reduced complexity encoders. The use of distributed source coding techniques al-

lows to consider different frames of a video sequence as different correlated sources

and thus encode them separately. This way, instead of encoding the video sequence

using motion compensated prediction, like in the classic video coding techniques, no

prediction is performed at the encoder. This reduces the complexity of the encoder

itself, as it does not operate any motion search.

• Error resilience: The distributed approach to video coding leads to a scheme that is

more robust to transmission errors with respect to classic prediction based techniques.

In the case of predictive coding, in fact, the presence of an error in a given frame of

the video sequence leads to a propagation of the error in all successive frames, as they

that are encoded based upon this corrupted frame. In the case of DVC instead, the

absence of a prediction loop at the encoder leads to a higher level of robustness, as an

error in a given frame does not propagate to the next frames.

So, for the case of single-camera systems we have the above two main motivations for the

use of DVC techniques.

For the case of multi-camera systems we have instead the following obvious other mo-

tivation for using DVC.
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Multi-camera systems:

• Take advantage of the correlation between different views for reducing the total rate

transmitted from the cameras to the receiver, without having to share information

between the cameras.

The motivations above explained for the adoption of a DVC approach for single and

multi-camera systems are to be considered very carefully as they determine the main issues

in the application of DSC to video coding. We will in fact now clarify in the next section

that one of the problems to be solved in the development of DVC systems is the correlation

issue. This problem is related to the motivations for the use of DVC; we will thus clarify

this connection after explaining what we mean by correlation issue.

4.2.2 Correlation issues

As it was previously anticipated, in this section we want to clarify the difference between

the hypothetical setting under which DSC theory was developed and the practical situation

that is encountered in the case of DVC. The first thing to say is that that in DSC some strong

hypotheses of stationarity and ergodicity of the sources are made, while it is clear that video

sources are strongly non stationary nor ergodic (or, better said, they are not adequately rep-

resented by such type of models). More precisely, there is a substantial difference in the

hypothesis on a priori information of the encoder and the decoder. In DSC theory one

assumes that both encoder and decoder a priori know the joint statistical properties of the

sources to be encoded, while in the case of DVC one does not know a priori the joint sta-

tistical characteristics of the involved sources, or more precisely one can only have a partial

knowledge of their joint statistics. We have not yet specified what the involved sources for

DVC are. We can refer to the signals of different cameras in a multi-camera system or to the

different frames of a single camera system that we consider as separate sources. In order to

simplify the discussion, in this section we only focus on those cases where DVC is intended

as a source coding problem with Side Information (SI) at the decoder, i.e. when we are in-

terested in operating on the corner points of the Slepian Wolf region or, for the case of lossy

source coding, in a Wyner-Ziv setting. In this case we can rephrase the previous ideas by

saying that in DSC the joint distribution between the SI and the data to be encoded is known

at both encoder and decoder, while in the case of DVC there is no such knowledge. This

is usually expressed by simply saying that the correlation between the SI and the original

data is not known a priori. In order to properly discuss the problem it is now necessary to

clarify what we mean when we say “SI” and “correlation” in a DVC problem. In the case

of DSC, the terms “SI” and “correlation” are very precisely described in terms of random

variables; the SI is a random variable that is “correlated” with the original data to be sent, in

the sense that they are not statistically independent. In the case of DVC, instead, the terms

“SI” and “correlation” have often different meanings. We try to propose a formalism to

the underlying ideas so as to have some clear description of the entities involved in a DVC

system. In a DVC system we typically have to encode a frame of a video sequence, say X ,
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and we suppose that different frames of the same sequence, or from different sequences, are

available to the decoder. The information theoretic SI in our setting is represented by the

whole set of frames available at the decoder. This is in fact the whole data available at the

decoder that is correlated with the frame to be encoded. In a practical context anyway, it is

very difficult to directly handle the correlation between this set of frames and the frame to be

encoded X . The duality between coding with side information at the decoder and channel

coding suggests the use of channel codes for this problem. In general, channel codes are

developed for recovering an original signal from a noisy version of it. So, in order to use

channel coding techniques within DVC we have to reduce the problem to a situation where

we have at the decoder a noisy version of the original data. This means that the whole set of

SI frames cannot be used in a channel decoder, but we have first to extract from this set of

frames an approximation Y of the original signal. This approximation Y is then the “new”

side information, which is actually used for recovering the original data X , and many times

we refer to Y itself as the side information. The difference between Y and X represents

the virtual noise that the channel decoder has to remove, and thus the similarity between

X and Y is often again called “correlation” between the side information and the original

data. Note that with this scheme we have moved the problem from a situation where we

only have an imprecise idea of correlation to a situation where we can use a difference as

measure of similarity, and we have thus introduced a normed space. In order to formalize

the above discussion and clarify the description of the entities and of the operations involved

in a DVC scheme we summarize the situation as follows:

1. A frame X of a sequence has to be encoded in a distributed fashion. The encoder

sends a Wyner-Ziv code S(X) of the frame (for example some parity bits) to the

decoder;

2. The decoder has access to different decoded frames from the same sequence or from

different sequences. We call these data Prior Side Information (PSI), and we indicate

it with Yp;

3. The decoder extracts from Yp an approximation Ye of X which we call Extracted Side

Information (ESI);

4. The decoder obtains a decoded version of X , say Xd, by “correcting” Ye with the use

of Wyner-Ziv bits received from the encoder.

In the above scheme we can now identify the points where the correlation issue arises.

There are two such points which are related to the two faces of the correlation problem. The

first point is the extraction of Ye from Yp. In order to construct the estimation Ye of the

original data X , it is in fact necessary to know what type of processing has to be performed

on the PSI Yp in order to construct a good approximation of X . The second point is the

correction of Ye to obtain X , where the statistical properties of the difference between X
and Ye are important in order to perform the correction of Ye to obtain E[X|Ye]. In order to

deal with the first point of the correlation issue, namely with the construction of Ye, we can
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introduce the following formalism. We define on Yp a set F of transforms and we say that Ye

is obtained by choosing a particular fe in F so that Ye = fe(Yp). The first problem is thus

to choose a proper fe in order to obtain a good Ye. In theory, we should choose the optimal

f in F , which is fopt = arg minf (‖X − f(Yp)‖). The choice of the optimal function fopt

requires anyway in general some information on the data X , and it is clear that X is not

known at the decoder (our objective is indeed to transmit X). This is the first correlation

issue, that is in order to extract the optimal Ye we would have to know the original data

X at the decoder. If we analyze deeper the situation we realize that in fact the problem

is that we need both Yp and X in order to construct the optimal Ye. But X is the data to

be sent from encoder to decoder, while Yp is the side information available at the decoder

and not at the encoder. Now we note that it is not possible to keep a general approach to

the problem, as there is a fundamental difference between the single camera systems and

the multicamera ones. In a single camera system, in fact, Yp is actually available at the

encoder, but we do not want to use it for several reasons. In particular, if we want to use

DVC in order to have a low-complexity encoder we cannot or we should not make use of

Yp at the encoder in order to identify the best function fopt. On another hand, if we are only

interested in using DVC for error robustness concerns, we can find the optimal fopt at the

encoder and then communicate this choice to the decoder (assuming such side information

will not be significantly affected by transmission errors). In a multi-camera system, instead,

we are only interested in the case where the cameras cannot communicate between each

other, and this implies that the encoder, who knows X , does not know Yp. So, the problem

of choosing a good fe must be solved at the decoder. If no information is available on

the data X we should construct the side information Ye in the best possible way given that

there is no information on X . In a more general case, we can anyway assume that some

description D(X) of X is sent by the encoder in order to help the decoder in the choice

of a proper function fe for the extraction of Ye. This description could be a low resolution

version of X or some contour information or high level description or any other appropriate

information, such as the geometry of the acquisition system (in Chapter 6 we consider and

study with some detail an example of such descriptions that is useful in order to perform

registration at the decoder side). The decoder can use D(X) in order to extract from Yp a
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good estimate of X . Note that if D(X) is not a complete description of X , in the general

case the decoder cannot find fopt because it cannot evaluate the difference between f(Yp)
and X . So, we have to assume that the decoder estimates the difference between f(Yp) and

X , and then chooses as fe the function that minimizes this estimate. We can thus consider

the more general encoding/decoding scheme as follows:

1. The encoder sends a description D(X) of the frame X and a Wyner-Ziv code S(X);

2. The decoder extracts Ye based on Yp and D(X). In order to do this, the decoder sets

Ye = fe(Yp) with fe = arg minf (Est(‖X − f(Yp)‖)) where Est(‖X − f(Yp)‖) is

an estimate of ‖X − f(Yp)‖ based on the knowledge of D(X).

3. The decoder constructs Xd by correcting Ye with the WZ bits S(X). So, Xd is a

function of Ye and S(X), say Xd = g(Ye, S(X)). The decoder can possibly go back

to step on step 2, using all the information available at this point in order to extract a

better Ye and repeat the WZ decoding again, and then reiterate the process.

In this scheme a second correlation issue arises in the last step, as we said above, where

we have to recover Xd from Ye and S(X). It is important in fact to clarify that the decoding

of Xd from Ye and S(X) is based on channel coding techniques, as explained in Chapter 2.

The main idea, in fact, is that the side information Ye is very similar to X and thus, if we

have some parity bits of the original X we can recover it by “correcting” Ye. So, in this step,

channel codes are used in order to correct Ye to obtain Xd. In this phase, in order to have soft

channel code working properly, it is important to have some information on the statistics of

the difference between Ye and X when the WZ encoding is performed. In particular, as the

WZ code S(X) is created at the encoder side, it is in theory necessary to know at the encoder

the amount of bits needed to correct Ye. In DSC it is assumed that the encoder knows the

correlation with the side information, while in our situation the difference between X and Ye

is not a priori known. Furthermore, as Ye is usually created at the decoder, the encoder does

not know it. It is thus necessary to find a solution to the problem of allocating the rate for

S(X). This point is of great importance in DVC and again in order to tackle the problem it

is necessary to consider the different scenarios, namely single and multiple camera systems.

In a single camera system, as the encoder has access to Yp it is possible in principle to

evaluate the distortion between Ye and X . If the motivation for the use of DVC is the light

complexity of the encoder we should not compute Ye at the encoder side. In many cases

it is however possible to estimate the difference between Ye and X without completely

constructing Ye. The better we want to estimate this difference and the more complex

the encoder must be. So, in the single camera system there is a trade-off between the

computational complexity we are allowed to use at the encoder and the efficiency in the rate

allocation for S(X). If we do not want to perform any estimation at the encoder, we have

to allocate the rate for S(X) basing this only on a priori assumptions and we must therefore

be either very conservative or very little robust. We have anyway a very different situation

if we consider the possibility of having a feedback channel from decoder to encoder, as in

he case for example of the Stanford codec. In this case, it is possible to simply computer at
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the encoder much more bits than required for S(X) and then use the feedback channel to

let the decoder ask bits to the encoder until it has enough to decode the sequence Xd form

Ye. It is important to note that the availability of this feedback channel significantly changes

the problem from a structural point of view. We postpone a detailed discussion of this topic

to the next section.

In the multiple camera system the situation is very different. In this case in fact, the

encoder does not have access to the intercamera side information Yp, so that there is no

trade off between the computational complexity of the encoder and the efficiency in the rate

allocation for the WZ code. In the case of multicamera systems the encoder can only guess

the amount of bits needed by the decoder based on some a priori knowledge. Even in this

case, the presence of a feedback channel from decoder to encoder completely changes the

perspective, and allows for a correct allocation of bits to the WZ code S(X). It is clear that

the use of feedback channels in an encoding scheme has to be considered with much care,

and so we leave to the following section a detailed discussion on this topic.

4.2.3 Feedback channels

In this section we aim at clarifying an important topic in DVC, namely the use of feedback

channels. With the term feedback channels we refer to a channel that can be used in order to

transmit information from the decoder to an encoder (or between encoders in a multi-camera

systems). The first thing to clarify is that the presence of feedback channels is usually not

considered in the theory of DSC and in particular there is no assumed feedback channel

in the Slepian-Wolf and in the Wyner-Ziv theory. So, it is important to clarify that the use

of feedback channels in DVC is not motivated by any theoretical results in DSC. Instead,

the use of feedback channels in DVC has to be considered as a new element with respect

to DSC, and the aim of this section is to clarify why the introduction of this channel has

some motivations that are structurally due to the differences between DVC and DSC. In the

previous section we have presented the “correlation issue” in DVC and we have clarified

that the most important difference between DVC and DSC is indeed that in DVC there is

no knowledge on the correlation between the involved sources. As we said, the correlation

issue is two sided, in the sense that there are two main problems; the first is that the decoder

has to construct an approximation of X from the prior side information Yp and the second

problem is that in order to allocate the rate for the WZ code the encoder must know the

correlation between the original data and the extracted side information Ye. As we have

clarified in the previous section the first of these two points have an impact in the encoding

of the data X and led to the conclusion that it may be necessary in some cases to help de

decoder in the extraction of Ye by letting the encoder send some description D(X) of the

data X to the decoder. The second correlation issue, instead, is due to the fact that the

encoder needs to know something that is in most cases only known at the decoder. This

clearly motivates the fact that in DVC we are interested in considering what could be done

with and without the presence of a feedback channel from decoder to encoder. Again we

want to clarify that in the case of DSC there is no such problem as the encoder completely
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knows the statistics of the sources and it is thus able to allocate the proper amount of bit rate

for the WZ code. In the case of DVC we could see the use of feedback channel as a penalty

to pay for the fact that we have not a complete knowledge of the sources. In order to have

a clear understanding of the problems, we need to consider again the importance and the

real need of a feedback channel by separating the discussion for different scenarios, namely

single-camera systems and multi-camera systems.

Consider first the single camera scenario. In this case the distributed source coding

approach is adopted in order either to keep a light computational complexity of the encoder

or to ensure error robustness. The single source is seen as a composition of different sources

and we use a distributed approach to decouple the encoding of different frames. From a

topological point of view, there is just a single source to be encoded by one encoder and

all the information descriptive about the source could be generated at the encoder. So, the

correlation between X and Ye can in principle be computed at the encoder without any

need of feedback channels from decoder to encoder. However, as long as we are interested

in using DVC techniques in order to have a light encoder, we do not want to construct

Ye at the encoder because this is an expensive operation. Instead of constructing Ye, we

can try to estimate the correlation between X and Ye by performing some computationally

simple operations on Yp. In the general case we would need to balance the computational

complexity of the encoder with the ability to allocate the optimal rate for the WZ code of X .

So, if in a single camera system there is no available feedback channel, we will need to find a

trade-off between the requirement of having a light complexity encoder and the requirement

of having good compression performance. If a feedback channel is available, instead, then

we can leave to the decoder all computationally expensive operations and use the feedback

channel to ask the right amount of bits to the encoder. From a structural point of view this

discussion suggests that in order to have good performance for a DVC technique in a single

source coding a feedback channel is probably important, but it is not strictly necessary in

order to solve the problem if we can accept a trade-off in our requirements.

For the case of multi-camera sources, instead, the problem is really different. In fact, if

there is no feedback channel, in a multi-camera scenario the encoder does not have access

to the intercamera side information available at the decoder. In this case, there is less a

discussion on the complexity of the encoder. However, as it will not be possible to esti-

mate the correlation between X and Ye (unless some limited direct communication would

be allowed between the different cameras), the only possibility is that we have some a priori

knowledge on such level of correlation. In the general case, this restriction leads to a very

poor robustness of the system and it is necessary to be very conservative if the correlation

level is not well known. If instead a feedback channel from the decoder to the encoder (or

alternatively between coders) is available, then there is a structural difference in the archi-

tecture of the system, as it is possible to send from the decoder to (between) the encoders

important information that would not be known otherwise by the encoders. This simple

observation clarifies that with respect to the single camera scenario, the feedback channel

in a multi-camera scenario is of much higher importance. Depending on the way we want

to use the feedback channel, in fact, we can construct different encoding-decoding schemes
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and different uses of the feedback channel lead to different implications.

As a final discussion on this section we want to clarify how we have to reconsider a

DVC scheme when we are allowed to use feedback channels. In our discussion we have

motivated the fact that there are some strong reasons for considering the use of a feedback

channel in certain situations. Namely we have explained the problems that arise due to the

correlation issue. Once the benefits of having a feedback channel has been motivated, one

still needs to define a way to use this channel, and the rate that can be sent through the

channel. Consider in fact that when we add a feedback channel, from a topological point

of view we have completely changed the situation. If no constraints are set on the use of

this channel we can easily fall in unrealistic conditions. Take as an example a multicamera

system. We are there interested in using DVC in order to take advantage of the correlation

between different views for compression performance, but without having communication

between the cameras. If we then allow the presence of a feedback channel from decoder

to encoders, and if we do not put any restriction on this channel, we have then reduced

the problem to a multicamera system with communication between cameras, as we can

send the data of a camera to other cameras passing through the decoder and then through

the feedback channels. So, we have reduced the DVC problem to a multiple view coding

problem where the ”distributed” part disappears. In the case of a single camera system there

is a similar consideration that should be kept in mind, namely if there is a feedback channel

and we do not put the appropriate constraints on it we can transmit the side information Ye

to the encoder which can use it in order to perfectly estimate the difference between X and

Ye with no computational burden. In both cases there are in reality some synchronization

issues, that will not be taken into account in this work. So, we conclude that the rate sent

over the feedback channels should have some strong constraint in order to still talk about

DVC. Finally, we briefly comment here that the use of feedback channels is strongly related

to the working condition and applications of DVC. The first obvious but important point to

clarify is that the possibility of using a feedback channel strongly depends on whether the

system has to work in real-time or not, for example, for archival purposes. It is clear that

in the first case it is not possible to use feedback channels. In the same way, the use of

feedback channels may be possible in real-time contexts but in this case it will be necessary

to impose some additional constraint in terms of latency.
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4.3 Improving turbo codec integration in Stanford codec

In Section 4.2.2 we have presented an analysis of what we called the correlation issue, and

we have clarified that there are two meaning for the word “correlation” in a distributed video

coding system, one of them being related to the statistical properties of the prediction er-

ror between the extracted side information Ye and the original data X , i.e. the model of

the correlation noise. As we have anticipated, this model is important in order to properly

use channel codes for the WZ decoding of data; in this section we aim at proposing an

improvement of the correlation noise model in the DVC scheme proposed by the Stanford

group, presented in Section 3.4, in order to improve the integration of turbo codecs in a DVC

scheme. With respect to the Stanford scheme, some contributions have been made in the

literature that focus on improving the performance of the Wyner-Ziv coding by improving

the quality of the constructed side information (see for example [11, 12]) as explained in

Section 3.5.1. Only a few attention (see [96]) has been paid instead to the problem of better

modeling the correlation between side information and the original data in order to improve

the channel code performance. Here, limitedly to the Stanford approach, the problem of

finding a good model for the correlation between the side information and the original data

is considered. In particular, the main objective of this section is to propose a good model for

the correlation noise between an original video frame and a prediction obtained by motion

compensated interpolation between adjacent frames. So, as in [1], we are here only inter-

ested to the very basic situation where every odd-indexed frame is supposed to be available

at the decoder while even-indexed frames are Wyner-Ziv encoded.

The starting point for this work is an implementation of the Stanford architecture, pro-

vided by the IST1 group within the DISCOVER project [39], which incorporates into the

basic codec structure some important modifications performed by IST group researchers

[11, 12]. For ease of description of the proposed contribution, we clarify here the work-

ing hypothesis and we briefly recall the basic scheme of the Stanford architecture, putting

the attention on the details of the correlation model that were not deeply analyzed in the

previous chapter.

For the present study, we do not consider quantization of the key frame, so that every

odd-indexed frame X2n+1 of the video sequence is supposed to be available at the decoder,

and we focus on the problem of Wyner-Ziv encoding of even indexed frames X2n. For

these frames a bit-plane based encoding approach is considered (see Fig. 4.2); the gray level

values are uniformly quantized and the bitplanes are fed one by one into a turbo encoder.

A systematic turbo code is used in order to extract from each bitplane some parity bits to

be passed to the decoder. In the decoding phase, for every even frame X2n an estimation

Y2n is constructed by applying motion compensated interpolation between the two adjacent

frames X2n−1 and X2n+1. The parity bits output from the turbo encoder are then used in

order to correct the estimation Y2n and extract a better reconstruction X ′
2n of the original

frame. The corresponding codec architecture is shown in more details in Fig. 4.2.

1We would like to thank Catarina Brites, João Ascenso and Fernando Pereira, Instituto Superior Técnico,

Instituto de Telecomunicações, Lisbon, Portugal, for providing the initial version of the used software.
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Figure 4.2: Architecture of the considered codec.

We clarify again that here we assume, as in [1, 11], that the key frame are losslessly

available at the decoder. This hypothesis is not admissible in a practical video coder but the

effects of quantization on the key frames can be considered of secondary importance for the

study presented in this section.

Of the whole architecture shown in Figure 4.2 it is important to consider here the virtual

channel model block and the turbo codec part. In the virtual channel block the correla-

tion model between the side information Y2n and the original frame X2n is used in order

to compute bit probabilities to be fed into the turbo decoder where Soft-Input Soft-Output

decoders are used (see Fig. 4.4). This bit probabilities computation is detailed in the next

section where we describe both the classic method used in the Stanford scheme and a non-

stationary model that we propose as an improvement.

4.3.1 Virtual Channel Model

Let us call X2n(r, c) the pixel value in the r-th row and c-th column of the 2n-d frame. The

side information Y2n is constructed at the decoder by motion compensated interpolation

between frames X2n−1 and X2n+1. Assuming constancy of the motion between X2n−1 and

X2n+1, this means that for every (r, c) point an estimation Y2n(r, c) of the value X2n(r, c)
is computed as

Y2n(r, c) =
X2n−1(r − vx, c− vy) + X2n+1(r + vx, c + vy)

2
, (4.1)

where vx and vy are (halves of) the estimated motion vector components. We are not inter-

ested here in how vx and vy may be computed, we refer to [11] for an important contribu-

tion in this direction. Once the whole side information frame Y2n has been constructed, it is
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used for the bit probabilities evaluation. This means that for every point (r, c) the value of

Y2n(r, c) is used in order to evaluate the probability of every bit of X2n(r, c) being 1 or 0.

What is done in the literature (see [1, 11]) is to consider that the virtual noise between X2n

and Y2n has a Laplacian distribution with zero mean and estimated standard deviation 1/α.

Hence, for every possible value of the amplitude x, the probability that X2n(r, c) is equal

to x is given by2

p[X2n(r, c) = x] =
1

2
α exp (−α|x− Y2n(r, c)|) (4.2)

Let then Xi
2n(r, c) be the i-th bit of the value X2n(r, c) and let Zi be the set of x values that

have i-th bit equal to zero; then for every i we compute

p[Xi
2n(r, c) = 0] =

∑

x∈Zi

p[X2n(r, c) = x] (4.3)

This way, for a given bitplane i we can compute the probabilities pi
0(r, c) = p[Xi

2n(r, c) =
0] for all the values of r and c, and we consider these probabilities as channel probabilities

to be input to the turbo decoder.

It is important to note that in the above presentation the α parameter is assumed to be

fixed for all (r, c) positions. If we look at bit probabilities as “confidence levels” assigned

to the bits, the fact that the α parameter is fixed for different positions means that the side

information Y2n is considered to have the same confidence in all points. In other words

there is an implicit assumption that the quality of the side information is constant across the

frame, without considering the quality of the motion estimation.

So, using a Laplacian distribution model with a fixed parameter corresponds to giving

the same confidence to the side information in every point of the frame. It is not difficult to

realize that the quality of the side information is very different from point to point depending

on the quality of the motion, on the presence of occlusions, lighting changes, ... So, a

good model for the noise between X2n and Y2n should take into account this space varying

nature. A possible adjustment to the model consists in considering the virtual noise to have

nonstationary Laplacian distribution. In other words we let the α parameter vary from point

to point and we thus indicate it with α(r, c). The effect of this choice during the turbo

decoding process is that well predicted values are considered to be more reliable by the

decoder and it is then easier to correct errors where the discrepancy between X2n and Y2n

is actually higher.

In this setting, the important point is then how to set the value of α(r, c) depending on

the information we have on the side information confidence in the (r, c) point. A simple

yet effective approach we have considered in this work consists on using expression (4.1)

in order to set the value of α(r, c). In fact, for every (r, c) point, in addition to the value

of the obtained side information Y2n(r, c), it is very important to consider the two values

2Actually the amplitude of the Laplacian must be rescaled in order to have total probability be equal to 1, as

the amplitude values x are typically clipped between 0 and 255.
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Figure 4.3: Histogram of the prediction error conditioned to the value of ∆, for ∆ =
0, . . . , 20. In this example we have used the first 100 frames of the foreman sequence,

QCIF resolution at 30fps. The solid and dashed lines represent even and odd values of ∆,

so as to make it easy to distinguish the curves.

X2n−1(r − vx, c − vy) and X2n+1(r + vx, c + vy) from which Y2n(r, c) is obtained as an

average. It is clear in fact that, in a typical sequence, the more those two values differ the

less confidence we should give to their average. So, we should use an expression for α(r, c)
so that it decreases when the value

∆(r, c) = |X2n−1(r − vx, c− vy)−X2n+1(r + vx, c + vy)| (4.4)

increases and viceversa3. In Figure 4.3 we see an example of the prediction error statistic

once it is conditioned to the value of ∆(r, c).
A possible expression for the α(r, c) values, which has shown to give good empirical

results, is the following:

α(r, c) =
β

γ + ∆(r, c)
. (4.5)

where β and γ are estimated parameters constant along every frame. Like for the α pa-

rameter, the optimal choice for the values of β and γ depends on the sequence and it is

3Remember that the standard deviation is 1/α.
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thus necessary to estimate them from the key frames and from the previously decoded WZ

frames. The main point here, apart from considering particular expressions for the α(r, c)
values, is to have a nonstationary model of the noise. In the above expression (4.5) for

α(r, c) we have only used the value of ∆(r, c) but it is clear that further information may be

used, as for example the value of the motion vector of the block containing the point (r, c).
Moreover the best choice for the α(r, c) parameter may also depend on the values of ∆(i, j)
for (i, j) in a neighborhood of (r, c) and not just in that exact location.

4.3.2 Pre-Interleaving

In the previous section we have presented a possible way of handling the nonstationary na-

ture of the correlation noise. As we said, the main benefit obtained from such an approach is

that it improves the turbo decoding process by providing more reliability to better predicted

pixels and low reliability to badly predicted ones.

Another important characteristic of the correlation noise is the memory property. In

fact, as the quality of the side information in some areas is higher than in some other ones,

we conclude that α(r, c) parameter will have most of the times high values on pixels that

are placed close together. This implies that, for a generic bitplane, many consecutive bits

are affected by high values of virtual noise, as in the case of typical burst errors. So, if

the turbo encoder is fed with bits read row by row from the frame bitplane, the first of the

two SISO decoders inside the turbo decoder (see Fig. 4.4) is faced with the problem of

correcting sequences of consecutive very noisy bits. So, due to the fact that the used codes

are recursive convolutional codes, in order to correct these noisy areas a high number of

parity bits is required from the first decoder. But in the considered scheme the bitrate is

managed by using rate compatible puncturing, as explained in [1]. It is then not possible to

simply increase the number of parity bits associated to noisy areas, and additional requested

parity bits are “spread” all over the frame. This implies that in order to have a sufficient

number of parity bits for noisy areas we must have more parity bits, most of which are

wasted in low noise areas.

Note that this problem does not affect the second SISO decoder inside the turbodecoder,

as the interleaver positioned before this second decoder cancels the burst effect spreading

noisy bits far apart in the bitstream. So, a simple but important benefit for the use of turbo

codes in this framework results from placing an interleaver also before the first encoder.

This provides substantial improvements in terms of rate distortion performance.

4.3.3 Experimental results

In this section some experimental results are shown. In Figure 4.5 the rate distortion per-

formance comparison for the foreman sequence is shown, where the improvements given

by non stationary model and by the pre-interleaver are visible. For this sequence we have

set α = 0.37 for the stationary model. For the non stationary model we experimentally set

γ = 10 and we set β so as to have an average standard deviation equal to the stationary

model. This way we are sure that the shown results are only due to the non stationary model
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Figure 4.5: Rate-distortion performance for the first 100 frames of foreman, QCIF, 30fps.

and not from some different a priori assumptions. In Fig. 4.6 the empirical standard devi-

ation of the correlation noise conditioned to the value of ∆(r, c) is shown. It can clearly

be observed that the value of the correlation noise (represented by α) is strongly correlated

with the value of ∆(r, c). It can be noticed the standard deviation of the noise (even when

conditioned to ∆(r, c)) depends on the motion level in the sequence, since the first 100

frames of the tested sequence exhibit less motion with respect to the next 100 frames.
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Figure 4.6: Empirical standard deviation conditioned to ∆(r, c) on foreman.



Chapter 5

Coding Constrained Sequences

Heavier than air flying machines are impossible.

– Lord Kelvin –

5.1 Introduction

In this chapter we want to consider a problem which is related to the approach, considered in

the previous chapters for the case of video sequences, of using Distributed Source Coding

techniques to encode a single source. If we abstract the idea to a general level, without

considering the particular case of video coding, we realize that what we are doing, from a

source coding point of view, is to use a DSC approach to exploit the memory of a source. In

this sense, instead of using predictive encoding techniques, we use a distributed approach

and we let to the decoder the task of exploiting the memory of the source in order to decode

the received strings of code symbols.

Consider for a moment the problem of source coding with side information at the de-

coder. From the point of view of source coding as the construction of mappings from source

symbols to codewords, the side information problem actually reduces to the use of mappings

that are possibly not invertible by themselves, but are invertible when a side information is

present. So, embedded again into the application of coding single sources with memory,

the use of DSC techniques actually corresponds to the use of codes that are not invertible

by themselves, but are invertible once the memory properties of the sources are taken into

account.

In this chapter we want to further investigate this problem from an information theoretic

point of view. So, we consider the problem of encoding a source with memory with codes

that are not necessarily decodable in the classic sense (as it will be clarified later), but that

are decodable under the constraint of a memory property. The model we consider here is the

case of first order Markov sources, and we consider thus codes as fixed mappings from the

0This chapter includes research results published in [32].
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Figure 5.1: Encoding of a Markov source by fixed mapping from symbols to bits.

alphabet symbols to strings of bits as show in Figure 5.1. Here we are only concerned with

lossless coding of discrete sources, and we will always assume such a condition in every

discussion, without explicitly recalling it every time.

The above setting leads to a problem which has very interesting connections with a cou-

ple of very basic concepts in the field of source coding, namely unique decodability and

expected lengths of codes. In his famous work [88], Shannon showed that the entropy of a

source is the fundamental quantity governing the rate required for a lossless representation

of its sequences of symbols. Shannon’s work was “only” focused on asymptotic rates and

showed that, asymptotically, it is not possible to encode a source at rates below the entropy.

No assertion was done on the minimum rate required for the representation of a finite num-

ber of symbols. In the succeeding years, attention was also paid to the minimum average

length of a lossless code for a finite number of symbols. The key result in this direction, due

to McMillan [68], is that every “uniquely decipherable” code must satisfy the Kraft inequal-

ity [60]. From this fact, it is easy to derive that the average length for symbol of a “uniquely

decipherable” code is at least the entropy of the source. Building upon this result, in the

information theory community it is usually asserted that for every source the average code

length for a block of n symbols is greater than or equal to the entropy of those symbols.

In this chapter we want to analyze in great detail the above sketched situation. We

show that the deduced properties of codes actually hold only under certain hypotheses, that

are less general than what is usually considered in the information theory community. In

particular, we show that if one considers sources with memory, then there exist stationary

and ergodic sources and associated lossless block codes such that the average length of

the code for n symbols is always strictly smaller than their entropy. Motivated by this

fact, we revise the idea of unique decodability and related issues with an eye to the case

of constrained sequences. We propose (or enforce) a source-specific definition of unique

decodability and we derive a weak Kraft inequality which represents a really necessary

condition for unique decodability. In accordance, we propose a variation of the Sardinas-

Patterson test for testing the unique decodability of a given code for a constrained source. In

addition, we propose an analysis of the proofs of McMillan’s theorem showing that a proof
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Figure 5.2: Graph, with transition probabilities, for a Markov Chain.

essentially equivalent to the ones in [68, 55] was almost already present in Shannon’s work

[88] in a much more general form, hidden in a formula for the evaluation of the capacity of

certain channels.

5.2 A preview example

Consider a source X generating symbols X1,X2,X3, . . . extracted from the set X =
{A,B,C,D} following the Markov chain rule graphically shown in figure 5.2. The la-

bels on the arrows indicate the transition probabilities from one symbol to the other. The

transition matrix associated with this source is thus

P =









1/2 0 1/2 0
0 1/2 0 1/2

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4









. (5.1)

Let Si be the probability distribution row vector on X at step i and let the initial state

be uniformly distributed over the four symbols, i.e., S1 = [1/4, 1/4, 1/4, 1/4]. The distrib-

ution at successive instants can be computed using the recursive relation Si+1 = SiP,∀i ≥
1. It is easy to verify that the uniform distribution is the stationary distribution of the tran-

sition matrix, so that with our hypothesis we have Si+1 = SiP = S1. So, the considered

source is stationary and, given that the matrix P is irreducible, it is also ergodic.

We want to consider possible encoding techniques for this source. In order to evaluate

their performance we first compute the entropy of the source. For every n ≥ 1 we clearly

have
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H(X1,X2, . . . ,Xn)
(a)
= H(X1) + H(X2|X1) + · · ·+ H(Xn|Xn−1) (5.2)

(b)
= H(X1) + H(Xi|Xi−1)(n− 1), ∀i > 1 (5.3)

(c)
= 2 +

3

2
(n− 1)

where we have used in (a) the Markov property of the source, in (b) the stationarity, and in

(c) the given probability assignment.

We now consider two different binary codes for this source.

Classic code

We call this code “classic” as it is the most natural way to encode the source given the

particular structure. For the first symbol we have four equiprobable choices, so that we use

2 bits for it, in the obvious way. For the next symbols we note that we always have dyadic

conditional probabilities. So, we apply a state-dependent code. For encoding symbol k we

use, again in an obvious way, 1 bit if symbol k − 1 was an A or a B, and we use 2 bits if

symbol k − 1 was a C or a D. This code seems to perfectly fulfill the source as the number

of used bits always corresponds to the uncertainty. Indeed, if we compute the average length

of the code for the first n symbols we have

E[l(X1,X2, . . . ,Xn)] = E[l(X1)] +

n
∑

i=2

E[l(Xi)] (5.4)

(a)
= 2 +

3

2
(n− 1) (5.5)

where in (a) we have used twice the fact that the distribution is always uniform. So, the

expected number of bits used for the first n symbols is exactly the same as their entropy, so

we would say with some certainty that the code has optimal performance.

Alternative code

Let us consider a different code, obtained by applying the following fixed map from

symbols to bits: A → 0, B → 1, C → 01, D → 10. It is easy to see that this code is

not uniquely decodable in the classic sense, defined for example as in [28] and discussed in

details in the next section. This is because different sequences of symbols are mapped into

the same codeword, for example AB and C are both coded to 01. It is also easy to see that,

for the particular source we are considering in our example, the code does not introduce

ambiguity, because different sequences that are producible by the source are mapped into

different codes, so that it is possible to “decode” any sequence of bits without ambiguity.

For example the code 01 can only be produced by C and not by AB because our source

cannot produce such sequence (the transition from A to B is impossible in our source).

It is not difficult to verify that it is indeed possible to decode every sequence of bits by

considering two bits at a time. If a 00 (or a 11) is found then clearly there is an A symbol
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followed by a code starting with a 0 (or a B symbol followed by a code starting with a 1).

If, instead, a 01 pair is found (or a 10) then a C is decoded (or a D). The coding technique

is thus defined by the following shemes for the encoding and decoding operations

Encoding

A → 0
B → 1
C → 01
D → 10

Decoding

00 . . . → A + 0 . . .
01 . . . → C + . . .
10 . . . → D + . . .
11 . . . → B + 0 . . .

(5.6)

Now that we have shown that the code can indeed be used to represent without loss

our source, we evaluate its performance. The expected number of bits in coding the first n
symbols is easily computed as

E[l(X1X2X3 · · ·Xn)] =

n
∑

i=1

E[l(Xi)] (5.7)

=
3

2
n

Unexpectedly, the average number of bits used by the code is strictly smaller than the

entropy of the symbols. So the performance of this code is even better than what we would

have considered to be the “optimal” one obtained with the classic coding technique.

It is important to point out here that we have just shown a code for a stationary ergodic

source that maps sequences of n symbols into strings of bits such that the average code

length is smaller than the entropy of those n symbols, and this happens for every n. In

source coding, the expected difference between the code length and the entropy is usually

called redundancy and is usually supposed to be a nonnegative quantity. Thus, in a sense we

could say that our code is affected by antiredundancy instead of redundancy. Note that there

is a huge difference in our situation with respect to that of the so called one-to-one codes

(see [6] for details). In that case, it is assumed that only one symbol must be coded, and

one is interested in studying codes as maps from symbols to binary strings without any need

to study the decodability of concatenation of codewords. Under those hypotheses, Wyner

[106] first pointed out that the average codeword length can always be made lower than the

entropy, and different authors have studied bounds on the expected code length over the

years [19, 84]. Here instead, we are using a classic block code and we are applying this

code to compress sequences of symbols of whatever length, concatenating the code for the

symbols, one by one as in the classic scenario.

A number of questions arise after considering the above simple example. We should

consider with some further detail what happens with our coding procedure and what happens

when the number of symbols goes to infinity. The first thing to point out is that the average

gain per symbol goes to zero as n increases – as it must be, being an immediate consequence

of the Asymptotic Equipartition Property for ergodic sources [67]. Looking carefully at our

example, we note that our coding strategy uses 3/2 bits on average for coding the first
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symbol, while the entropy associated with the random variable X1 is 2. For the following

symbols, in turn, the entropies H(Xi|Xi−1) equal 3/2 bits, and thus they have exactly the

same value as the number of bits used by our code. So, we can say that our code only gains

in the first symbol. But this fact is somehow interesting; our code assigns to the first symbol

a number of bits smaller than its entropy, using the memory properties of the source, without

affecting unique decodability. Thus, given that we are usually interested in coding a finite

number of symbols, the problem of finding the optimal coding strategy arises.

It is also interesting to consider in this specific example the difference between the two

above proposed coding technique from the point of view of computational complexity, and

relate this discussion to what was said about using DSC techniques instead of predictive

coding for exploiting the memory of sources. In particular, we know that the compressibil-

ity of the source is due to the fact that the conditional entropy H(Xi|Xi−1) is smaller than

H(Xi). Note now that the “Classic code”, which essentially is a state-dependent Huffman

code, actually fits with the “conditional entropy idea” in the sense that it really encodes

each symbol given the preceding one. This implies that the encoder must trace the state of

the source and choose the code for the new symbol, exactly in the same way as it done in

predictive coding. On the contrary, the non prefix-free codeword assignment of our alter-

native code allows a very simple encoding phase, as there is a fixed mapping from symbols

to code bits, with the same (even better, but not asymptotically) compression performance.

The point is that we are making a different use of the decoder knowledge about possible

transitions. Note that, even for the Huffman code, we are supposing that the decoder ex-

actly knows which transitions are possible and which are not, as impossible transitions are

not associated to any code. The difference is that with the alternative code we are making

the decoder more active.

We would like to point out here that in practice the proposed approach was already used

in other contexts that are also related to the use of DSC in coding sources with memory.

One of the oldest examples seems to be that of modulo-PCM codes ([42]) for numerical

sequences. In that case, given a numerical source with certain memory properties, only the

modulo-4 value of every sample is encoded. The task of understanding the original value

using the memory of the source is left to the decoder.

5.3 Unique decodability for constrained sequences

In this section we briefly survey the main definitions and theorems on uniquely decodable

codes as presented in the literature and we then propose an adequate treatment of the case

of constrained sequences by introducing a generalized Kraft inequality and a generalized

Sardinas-Patterson test.

5.3.1 Classic results

We will consider [45] and [28] as representative references for what can be viewed as the

classic approach to lossless source coding. In the above cited references the main steps in the
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study of data compression can be considered to be approximatively the same. We summarize

here the main classic definitions and theorems, adding comments and introducing the main

variation on unique decodability definition, so as to give a precise idea of the collocation of

the work presented in the next sections. We restrict our attention to finite alphabet sources

in order to avoid unnecessary complication in the formulation, and we use the term random

variables in a somehow improper way to indicate a finite set of symbols with associated

probabilities. With this assumption in mind we can give the following definition of source.

Definition 5.3.1 An information source X is a one-sided infinite sequence of random vari-

ables X1,X2,X3 . . . taking values in a finite alphabet X . The source X is said to be mem-

oryless if X1,X2, · · · are independent and identically distributed (i.i.d.). Furthermore, we

say that the source has memory if the random variables X1, . . . ,Xn are not independent.

The following definitions are essentially taken from Cover [28].

Definition 5.3.2 A variable-length code for a random variable X is a map from the (source)

alphabet X to D∗, the set of finite length sequences of symbols from a D-ary (code) alpha-

bet. For every x ∈ X let C(x) be the codeword associated to x and let l(x) be the length of

C(x).

In order to have a code represent a random variable in a lossless way, it is necessary that

different values of X are mapped to different codewords.

Definition 5.3.3 A code is said to be non-singular if, for xi, xj ∈ X ,

xi 6= xj =⇒ C(xi) 6= C(xj). (5.8)

With this definition a non-singular code maps different values of X to different se-

quences of code symbols. We have defined an information source as a sequence of random

variables, so that in general we are interested in coding sequences of source symbols, where

the code for a sequence of symbols is generated by simply concatenating the code of the

symbols one after the other. We need thus some more definitions. Cover [28] proceeds thus

with the following definitions.

Definition 5.3.4 The extension C∗ of a code C is the mapping from finite length strings of

X to finite length strings of D defined by

C(x1x2 · · ·xn) = C(x1)C(x2) · · ·C(xn), (5.9)

where x1x2 · · ·xn and C(x1)C(x2) · · ·C(xn) indicate respectively concatenation of source

alphabet symbols and corresponding concatenation of the associated codes.

Definition 5.3.5 A code is uniquely decodable if its extension is non-singular.
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We note at this point that the definition of unique decodability hides a very subtle issue.

In fact, the given unique decodability definition requires every sequence of symbols from

the alphabet X to be associated with a different sequence of symbols of the code alphabet

D. This is thus a definition of unique decodability for the code C without any reference

to the particular source for which this code is used, but only to the alphabet of the source.

In a sense, with this definition we are requiring the code to be uniquely decodable for the

worst case scenario where the source at hand can indeed produce sequences that contain

any possible combination of symbols from X . It is instead clear from the example shown in

Section 5.2 that there are sources, that we call constrained sources, that can produce only a

proper subset of sequences from the set of all combinations of symbols of their alphabets.

With respect to this point Gallager [45] gives a definition of unique decodability without

explicitly using extensions of codes, and referring to source sequences:

Definition 5.3.6 A code is uniquely decodable if for each source sequence of finite length,

the sequence of code letters corresponding to that source sequence is different from the

sequence of code letters corresponding to any other source sequence.

Note that, as it is stated, this definition is fundamentally different from the definition

given by Cover, because this one actually associates the unique decodability property with

the particular source at hand. Unfortunately, Gallager gives this definition in a context

where the sources are implicitly assumed to be memoryless. In this case, obviously, the

source can produce any sequence of symbols and the definition reduces to be equivalent to

the definition given by Cover.

At this point we consider important to introduce the first variation to the classic literature

on unique decodability with the following two definitions.

Definition 5.3.7 Let X be a discrete information source on the alphabet X . We say that X
is a constrained source if for at least one finite k there exists an element of X k that cannot

be obtained as outcome of the first k symbols of the source. Otherwise we say that the source

is unconstrained.

Definition 5.3.8 Let X be an information source with alphabet X . A code C is said to be

uniquely decodable for the source X if no two different finite sequences of source symbols

producible by X have the same codeword.

With these definitions every code that is uniquely decodable in the classic sense is

uniquely decodable for every source and every uniquely decodable code for an uncon-

strained source is uniquely decodable in the classic sense. Finally, in general, uniquely

decodable codes for a constrained source are not uniquely decodable if we adopt the classic

definition.

A particular class of codes that are uniquely decodable in the classic sense - and thus for

any source - are the well known prefix codes. We sat that a word w1 is a prefix of another

word w2 if w2 is obtained by concatenating w1 with an appropriate string of code symbols.

For example, for binary codes, the word ‘011’ is a prefix of ‘01101’.
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Definition 5.3.9 A code is called a prefix-code if no codeword is a prefix of any other code-

word.

These codes are also called instantaneous because, under the prefix condition, it is pos-

sible to decode a sequence of codewords one by one as soon as we receive them without

having to wait for the end of the message. An example of a variable length prefix code

was used by Shannon in [88] in order to prove the direct part of Theorem 9 on the average

rate required to encode information sources. All prefix codes satisfy the so called Kraft

inequality [60]:

Theorem 5.3.1 (Kraft Inequality) Let li, i = 1, . . . , n, be the lengths of the codewords of

a prefix code and let D be the size of the code alphabet. Then

n
∑

i=1

D−li ≤ 1 (5.10)

Conversely, if a set of integers li, i = 1, . . . , n, satisfies this inequality, the li are neces-

sarily codeword lengths of a prefix code.

This inequality plays an important part in the study of the average codeword length of

codes. Using inequality (5.10), in fact, it is not difficult to show that if a prefix code is used

for encoding a random variable X , then the average codeword length is not smaller than the

base-D entropy HD(X), i.e. E[l(X)] ≥ HD(X). If pk are the probabilities of the symbols

in X we have in fact [68]

HD(X)− E[l(X)] =
∑

k

pk logD

1

pk
−
∑

k

pklk (5.11)

=
∑

k

pk logD

D−lk

pk
(5.12)

(a)

≤
∑

k

pk

(

D−lk

pk
− 1

)

logD e (5.13)

≤ 0 (5.14)

where (a) is justified by the inequality logD(x) ≤ (x− 1) logD e. Consider now the use of

prefix codes for the sequences of symbols of a source X . Take the first n symbols of the

sequence; every possible outcome of these n symbols can be viewed as a single supersymbol

in the alphabetXn. So, the average code length of a prefix code for the first n symbols of the

sequence must be at least the entropy of the symbols. In other words we have the following

result [28].

Theorem 5.3.2 For every prefix code the average length for the first n symbols of a source

X satisfies

E[l(X1,X2, . . . ,Xn)] ≥ H(X1,X2, . . . ,Xn) (5.15)
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This is a very strong result on the average code length of a prefix code, which strengthen the

asymptotic results of Shannon to the case of a finite number of symbols. On the other hand,

we know that there are codes that are uniquely decodable (in the classic sense) but are not

prefix codes. For example, a binary code composed with the words ‘01’ and ‘011’ is not a

prefix code, but the concatenation of words is always decodable, as a new word always start

with a 0. So, the question of what is the minimum code length for a uniquely decodable

code remains. Here a key role is played by McMillan’s theorem [68].

Theorem 5.3.3 (McMillan [68]) If a code C is uniquely decodable in the classic sense

then the codewords length satisfy the Kraft inequality

n
∑

i=1

D−li ≤ 1 (5.16)

Commenting this result Elias says [41]“There is, therefore, no advantage in either average

codeword length or effective decipherability to be gained by using a uniquely decipherable

set that is not a prefix set”. Both Gallager and Cover essentially conclude the same and use

this theorem to state that every result on codeword lengths obtained for prefix codes hold

true for uniquely decodable codes. In particular, it is asserted that, for every source, any

uniquely decodable code must satisfy inequality (5.15).

It is important here to point out that with the definition of unique decodability given by

Cover one actually have inequality (5.15) satisfied. The most important point, however, is

that the set of uniquely decodable codes defined this way does not correspond to the idea

of unique decodability one would expect, i.e. the fact that it is possible to decode every

message. In this sense, Definition 5.3.8 makes more sense. Unfortunately, or surprisingly,

using this definition we find that inequality (5.15) is no longer guaranteed for certain sources

with memory, as shown by the example of Section 5.2. We propose thus the following

theorem.

Theorem 5.3.4 There exists at least one source X and a uniquely decodable code for X
such that, for every n ≥ 1,

E[l(X1,X2, . . . ,Xn)] < H(X1,X2, . . . ,Xn). (5.17)
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It is clear at this point that this result is due to the fact that for certain constrained sources

the Kraft inequality is not a necessary condition for a code to be uniquely decodabile for

that given source. Indeed, the code used in the example of Section 5.2, which is composed

of the words ‘0’, ‘1’, ‘01’ and ‘10’, clearly does not satisfy the Kraft inequality for binary

alphabets. In conclusion, as the Kraft inequality is not a necessary condition for a code to

be uniquely decodable for a constrained source, it is important to find a different necessary

condition. In the next section we propose a modified Kraft inequality that gives a necessary

condition for the case of constrained Markov sources.

5.3.2 Modified Kraft inequality

As we have already discussed in the preceding Section, the important result obtained by

McMillan is that a necessary condition for the unique decodability (in the classic sense) of

a set of n codewords is that their lengths l1, l2, . . . , ln satisfy the Kraft inequality. Also,

we have clarified that this condition is not necessary for a code to be uniquely decodable

for a constrained source. In this section we proposed a modified Kraft inequality which

constitutes a necessary condition for the case of first order constrained Markov sources, i.e.

Markov sources that have the peculiarity of having some impossible transitions between

symbols. Note that in the example of Section 5.2 the source is a constrained Markov source.

We put the focus on Markov chains where the source symbols are associated to states, i.e.

in the Moore form. We then show that the result is easily extended to the case of Markov

sources in the Mealy form, i.e. when every transition is associated to an output symbol, with

in general more than one possible transitions between every couple of states.

In order to give an easy presentation of our result consider first Karush’s proof of Mcmil-

lan theorem [55]. In his proof Karush uses an elegant trick. Consider the expression

(

∑

i

D−li

)k

. (5.18)

If we expand this power of a sum, we obtain a sum of nk terms each of them being a product

of factors D−li in a different combination. The way the possible combinations of products

are constructed is exactly the same as the way the symbols of the source are concatenated

in all possible combinations to obtain sequences of k symbols. Every term in the expansion

of (5.18) can thus be associated with a sequence of symbols. For example a sequence

starting with x1, x3, x2, . . . is associated to a term D−l1D−l3D−l2 · · · . Now, consider for

a given r, all sequences of k symbols giving a total codeword of length r. These words

are associated to terms of equal value D−r in the expansion of (5.18). But if the code is

uniquely decodable, there are at most Dr sequences giving a code of length r. So, the total

contribution of those words in the expansion of (5.18) is at most 1. This fact holds true for

every value of r up to the maximum possible code length obtainable with k symbols, that is

for r ≤ klmax, where lmax is the largest of the li. Summing up for all values of r from 1 to
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klmax we cover all possible terms in the expansion, so that we have

(

∑

i

D−li

)k

≤ k lmax. (5.19)

This inequality must hold for every k. But the right hand side is a linear function of k,

while the left hand side is an exponential function and thus, for large enough k, it would

exceed any linear function if the base was larger than 1. This leads to the conclusion that
∑

i D−li ≤ 1.

In this proof of McMillan result, by considering expression (5.18) we have implicitly

assumed that we are required to distinguish between every possible combination of symbols

or, in other words, that the code is uniquely decodable in the classic sense. If the source

is constrained, instead, we should only consider the possible combination output by the

source.

Let us consider again as an example the source of Figure 5.2, with the binary alphabed

(i.e., D = {0, 1}) and with l1, l2, l3 and l4 as the lengths assigned respectively to A, B, C
and D. In this case, the terms in the expansion of the left hand side of (5.19) that contains

for example · · · 2−l12−l2 · · · or · · · 2−l12−l4 · · · should not be considered, as A is never

followed by B nor D in a source sequence. Let us consider now the matrix

Q =









2−l1 0 2−l1 0
0 2−l2 0 2−l2

2−l3 2−l3 2−l3 2−l3

2−l4 2−l4 2−l4 2−l4









, (5.20)

which is obtained from the transition probability matrix of the source by replacing every

non-zero term in the i-th row with 2−li . It is not difficult to verify that the really necessary

correspondent of eq. (5.19) for our source should be written, for k > 0, as

[

1 1 1 1
]

Qk−1









2−l1

2−l2

2−l3

2−l4









≤ k lmax (5.21)

It is possible to show (see hereafter) that a necessary condition for this inequality to be

satisfied for every k is that the matrix Q has spectral radius1 at most equal to 1. We present

the result in the general form.

Theorem 5.3.5 Let P be an irreducible n×n stochastic matrix representing the transition

probabilities of a Markov chain and l = [l1, l2, . . . , ln] a vector of n integers. Let Q be the

n× n matrix such that

Qij =

{

0 if Pij = 0

D−li if Pij > 0
(5.22)

1The spectral radius of a matrix is defined as the greatest modulus of its eigenvalues.
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Then, a necessary condition for the codeword lengths l1, l2, . . . , ln to be lengths of a

uniquely decodable D-ary code for a Markov source with transition probability matrix P is

that ρ(Q) ≤ 1, where ρ(Q) is the spectral radius of Q.

Proof. We follow Karush’s proof of McMillan theorem. Suppose without loss of gener-

ality that the set of our source symbols is X = {1, 2, . . . , n}, and call X (k) the set of all

sequences of k symbols that can be produced by the source. Let us set, for convenience of

notation, L = [D−l1 ,D−l2 , . . . ,D−ln ] and define, for k > 0,

VT
k = Qk−1LT . (5.23)

Then it is easy to see by induction that the i-th component of Vk is written as

Vi
k =

∑

x1,x2,...,xk

D−lx1
−lx2

···−lxk (5.24)

where the sum runs over all elements (x1, x2, . . . , xk) of X (k) with varying x2, x3, . . . , xk

and x1 = i. So, if we call 1n the row vector composed of n 1’s, we have

1nQk−1LT =
∑

x1,x2,...,xk

D−lx1
−lx2

···−lxk (5.25)

where the sum now runs over all elements of X (k). Thus, reindexing the sum with respect

to the total length r = lx1
+ lx2

+ · · · + lxk
and calling N(r) the number of sequences of

X (k) to which a code of length r is assigned, we have

1nQk−1LT =

klmax
∑

r=klmin

N(r)D−r (5.26)

where lmin and lmax are respectively the minimum and the maximum of the values li, i =
1, 2, . . . , n. Since the code is uniquely decodable, there are at most Dr sequences with a

code of length r. This implies that, for every k > 0, we must have

1nQk−1LT ≤
klmax
∑

r=klmin

DrD−r = k(lmax − lmin + 1) (5.27)

Now, note that the irreducible matrix Q is also nonnegative. Thus, by the Perron-Frobenius

theorem (see [72] for details), its spectral radius ρ(Q) is also an eigenvalue2, with algebraic

multiplicity 1 and with positive associated eigenvector. Let wT be this eigenvector; then,

2Note that in general the spectral radius is not an eigenvalue as it is defined as the maximum of |λ| over all

eigenvalues λ.
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as LT is positive, there exists a maximal positive constant α such that LT = αwT + zT ,

where zT is a nonnegative vector. Thus, we can write the left hand side of (5.27) as

1nQk−1LT = 1nQk−1αwT + 1nQk−1zT

= αρ(Q)k−11nwT + 1nQk−1zT

= βρ(Q)k−1 + γ

where β = α1nwT is positive and γ is nonnegative. So, if ρ(Q) > 1, the term on the left

hand side of eq. (5.27) asymptotically grows at least as ρ(Q)k−1. On the contrary, the right

hand side term only grows linearly with k and for large enough k equation (5.27) could not

be verified. We conclude that ρ(Q) ≤ 1.

We note that if the P matrix has all strictly positive entries, the matrix Q is positive with

all equal columns. It is known (see again [72]) that the spectral radius of such a matrix is

given by the sum of the elements in a column, which in this case is
∑

D−li . Thus, for non-

constrained sequences, we obtain the classic Kraft inequality. Furthermore, as the spectral

radius of a nonnegative positive matrix increases if any of the elements increases, we deduce

that the case when ρ(Q) = 1 correspond to an extreme situation in terms of P and l. In

the sense that if for a given matrix P there is a decodable code with codeword lengths

li, i = 1, . . . , n such that ρ(Q) = 1, then there is no decodable code with lengths l′i if l′i ≤ li
for all i with strict inequality for some i. Also, for the same codeword lengths, it is not

possible to remove constraints from the Markov chain while keeping unique decodability

property.

The most important remark, however, concerns the non sufficiency of the stated condi-

tion. In fact, while the classic Kraft inequality is a necessary and sufficient condition for the

existence of a uniquely decodable code for an unconstrained sequence, the found inequality

ρ(Q) ≤ 1 is unfortunately only necessary, and not sufficient. We discuss this point in the

next section, where we propose an extension of the Sardinas Patterson test for testing the

unique decodability of a code for a constrained sequence.

The above presented discussion is focused on the case of constrained sources that are

modeled with Markov chains in the Moore form, as considered for example in [28]. In

other words, we have modeled information sources as Markov chains by assigning an out-

put source symbol to every state. This way we have considered only sources that have a

memory of one symbol, because transitions in the Markov chains are always considered to

be independent. In order to deal with more general sources one can consider memory of

higher order and model the source with higher order Markov chains. An elegant treatment

of finite memory sources can be constructed by considering a source as a finite state non-

deterministic machine where output symbols are associated to transitions between states

rather than to states. This corresponds to the Markov source model as described for ex-

ample in [45]. As in this case the output symbols are associated to transitions, we can

informally refer this model as a Markov model in the Mealy form.

As an example, consider the source used in the preview example, whose Moore form is

represented in Figure 5.2. We can model this source with only three states using a Mealy
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B, 1/2A, 1/2

A, 1/4

C, 1/2

C, 1/4 D, 1/4

B, 1/4

D, 1/2

α β

γ

Figure 5.3: Markov chain, in the Mealy form, associated to the source of figure 5.2. Here

every arc is labeled with the associated output symbol and the probability of the transition.

representation (see Figure 5.3); the source is in state α if the last output symbol is an A, it

is in state β if the last output symbol is a B, and it is in state γ if the last output symbol is a

C or a D. Then, symbols are output at the transitions from one state to the other.

Now note that once the source is represented in the Mealy form, it may be interesting

to consider coding techniques that associate different codewords to the same symbol de-

pending on the state of the source. In our toy example this would include as a particular

case the encoding technique that we have indicated as “Classic Code” in Section 5.2. In our

study, anyway, we are not really interested in finding such “adaptive” codes, but rather on

the use of “memoryless” codes for coding sources with memory. Thus, even if the Mealy

form has the advantage of allowing an easy representation of state-dependent codes, we are

primarily interested in studying the bounds obtainable when the code associated to a given

symbol is kept fixed, regardless of the particular state of the source. This is coherent with

the aim of modeling simple encoders that use singular codes in order to compress a source

with memory.

Keeping in mind the explained setting, as we have anticipated at the beginning of the

Section, Theorem 5.3.5 can easily be adapted to the case of sources modeled as Markov

chains in the Mealy form.

Theorem 5.3.6 (Mealy form) Let S1, S2, . . . , Ss be s possible states of a source X with

alphabet X = {1, 2, . . . , n}, and let Oi,j be the subsets of X of possible symbols output by

the source when transiting from state Si to state Sj . Then, a necessary condition for the set

of integers l1, l2, . . . , ln to be lengths of a uniquely decodable code for the source X is that

ρ(Q) ≤ 1, where Q is the matrix defined by

Qi,j =

{

0 if Pij = 0
∑

v∈Oi,j
D−lv if Pij > 0.

(5.28)

Here Pij = 0 means that a transition from state Si to state Sj is impossible, and Pij > 0
means that there is at least one possible transition from Si to state Sj , i.e. the set Oi,j is
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non-empty.

Proof. The proof is essentially equivalent to the proof of Theorem 5.3.5 with only small

changes for the new setting.

In order to make clear the statement of the theorem, it is interesting to note how it is

applied to the particular case of the source used in the preview example. Note that, in the

case of a binary code, the Moore form show graphically in Figure 5.2 lead to the matrix Q

as defined in equation (5.20). If we use instead the Mealy representation of Figure 5.3, the

matrix Q defined in Theorem 5.3.6, for the case of a binary code, is a 3× 3 matrix, namely

Q =





2−l1 0 2−l3

0 2−l2 2−l4

2−l1 2−l2 2−l3 + 2−l4



 . (5.29)

The theorem says that the spectral radius of this matrix has to be not larger than 1 in

order to have a decodable code for our source. Noticeably, this matrix has not only the same

spectral radius, but the same whole spectrum3 of the matrix defined in (5.20).

As a further example, we can consider what happens in the case of unconstrained se-

quences. Consider for example an unconstrained source with an alphabet of n symbols. In

this case, from the point of view of the possible combination of output symbols, we can

model the source with only one state S1, every symbol being a possible output when mov-

ing form state S1 to itself. The matrix Q defined in Theorem 5.3.6, for a D-ary code, is in

this case a 1× 1 matrix, i.e. a scalar value, which equals
∑

i D−li . So again we obtain the

classic Kraft inequality.

5.3.3 Extended Sardinas-Patterson test

In the preceding sections we have shown that the classic Kraft inequality is not, in general,

a necessary condition for the unique decodability of a constrained sequence, and we have

found a necessary condition under this hypothesis. Unfortunately, the found condition is

not sufficient as can be easily shown by means of trivial examples. We consider here only

the case of Markov sources modeled in the Moore form for simplicity. Note that the only

entities determining the matrix Q are the length vector l and the graph associated to the

Markov chain, i.e. the state pairs with positive transition probability. Thus, we only consider

the transition graphs of the sources without taking into account the value of the transition

probabilities. From now on, furthermore, we only consider binary codes for simplicity,

without any loss of generality with respect to the general case of D-ary sources.

Consider a source with three symbols A,B and C with transition graph as shown in fig.

5.4(a). It is easy to see that if l = [1, 1, 1] then ρ(Q) = 1; anyway, it is clearly impossible

3The same spectrum intended as the set of eigenvalues. The only difference between the matrix defined in

(5.20) and the one in 5.29 is that in the first one the null eigenvalue has multiplicity 2 rather than 1.
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Figure 5.4: Two examples of transition graphs for which ρ(Q) ≤ 1 is not a sufficient

condition.

to decode the sequences of the source if we assign only one bit to every symbol. In general,

we may consider that if the initial state is distributed with positive probability on every

symbol, it is not possible to have a decodable code with more than 2i codewords of length i,
since otherwise even the initial state cannot be recovered. Anyway, imposing this additional

condition is not sufficient. Take for example a code with l = [1, 1, 2] for a source with

transition graph as shown in fig. 5.4(b); we have ρ(Q) < 1, only two codewords of 1 bit

and one codeword of 2 bits, but still a decodable code with those lenghts does not exist.

In fact, if we assign for example A → 0, then we must assign B → 1 and consequently

C → 11. But so, BCB and CC have the same code.

The above examples show that the question of finding a sufficient condition on the word

lengths for the existence of a uniquely decodable code for a constrained sequence appears

to be more complicated than with unconstrained sequences. A positive fact is that it is pos-

sible to extend the Sardinas Patterson (SP) test [83], originally developed for unconstrained

sequences, to the case of our interest of constrained ones. Given a set of codewords, the SP

test allows to establish in a finite number of steps if the code is uniquely decodable in the

classic sense. Here we modify the classic algorithm for the case of constrained sequences.

The generalization is straightforward and we do not give here a formal proof of the correct-

ness, as it would merely be a rewriting of that for the classic SP test, for which we refer the

reader to [13, th. 2.2.1].

Suppose our source symbol set is X = {1, 2, . . . , n} and let us call W = {Wi}i=1,...,n

the set of associated codewords. For i = 1, 2, . . . , n we call Fi = {Wj |Pij > 0} the subset

of W containing all codewords that can follow Wi in a source sequence. We construct

a sequence of sets S1, S2, . . . in the following way. To form S1 we consider all pairs of

codewords of W ; if a codeword Wi is a prefix of another codeword Wj , i.e. Wj = WiA
we put the suffix A into S1. In order to consider only the possible sequences, we have to

keep trace of the codewords that have generated every suffix; thus, let us say that we mark

the obtained suffix A with the two labels i and j, and we thus write it as iAj . We do this

operation for every pair of words Wi and Wj from W , i.e. for i, j = 1, . . . , n. Then, for

n > 1, Sn is constructed by comparing elements of Sn−1 and elements of W . For a generic
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Figure 5.5: Two examples of transition graphs for which ρ(Q) ≤ 1 is a sufficient condition.

element lBm of Sn−1 we consider the subset Fl of W :

a) If a codeword Wk ∈ Fl is equal to lBm the algorithm stops and the code is not

decodable;

b) if lBm is a prefix of a codeword Wr = lBmC we put the labelled mCr suffix into

Sn;

c) if instead a codeword Ws is prefix of lBm = WsD, we place the labelled suffix sDm

into Sn.

The code is uniquely decodable if and only if item a) is never reached.

Note that the algorithm can be stopped after a finite number of steps; there are in fact

only a finite number of possible different sets Si and so the sequence Si, i = 1, 2, . . . is

either finite (i.e., the Si are empty sets from sufficiently high i) or periodic. We note that the

code is uniquely decodable with finite delay if the sequence Si is finite and uniquely decod-

able with infinite delay if the sequence is periodic. In this case the code is still decodable,

since finite strings of code symbols can always be uniquely decoded, but the required delay

is not bounded. This means that, for any positive n, there are at least two source sequences

that produce codes that require more than n symbols delay in order to be disambiguated.

As an example of SP test for constrained sequences we consider the transition graphs

shown in fig. 5.5. For both cases we use codewords 0, 1, 01 and 10 for A, B, C and D
respectively. For the graph of fig. 5.5(a) we obtain S1 = {A1C , B0D}, S2 = ∅. Thus the

code is finite delay uniquely decodable and we can indeed verify that we need to wait at most

two bits for decoding a symbol (this code is indeed the code used for the example of Section

5.2). For the graph of fig. 5.5(b), instead, we have S1 = {A1C , B0D}, S2 = {C0D, D1C}
and then Si = S2 for every other i ≥ 3. So, the code is still uniquely decodable but

with infinite delay; in fact it is not possible to distinguish the sequences ADDD · · · and

CCC · · · until they are finished, so that the delay may be as long as we want.
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5.4 On unique decodability and related topics

5.4.1 Counting methods, McMillan’s theorem and a proof by Shannon

In this section we want provide an analysis of McMillan’s theorem from an historical point

of view, comparing different proofs and in particular by showing that both the original

proof by McMillan [68] and Karush’s one [55] are essentially equivalent to a proof by

Shannon [88] for the evaluation of the capacity of certain channels. In a sense, we can

say that McMillan theorem was “almost” already proved in Shannon’s paper. Even more

interestingly, also our modified Kraft inequality was almost already present in Shannon’s

paper hidden in the evaluation of the capacity of finite state channels such as the telegraph

[88].

Consider first the original proof by McMillan of his own theorem [68]. Let lmax be the

maximum of the lengths l1, l2, . . . , ln and let w(r) the number of words of length r; the

Kraft inequality can thus be written as

lmax
∑

r=1

w(r)D−r ≤ 1. (5.30)

Let then Q(x) be the polynomial defined by

Q(x) =

lmax
∑

r=1

w(r)xr. (5.31)

The proof is based on the study of Q(x) as a function of a complex variable x and leads to a

stronger result than the Kraft inequality, namely to the result that Q(x)− 1 has no zeros in

the circle |xD| < 1 of the complex plane. As Q(x) is continue and monotone for real x ≥ 0
the Kfraft inequality easily follows. By removing from the original proof the parts that are

not strictly important for the proof of the simple Kraft inequality, we obtain approximately

the following flow. Let N(k) be, as before, the number of sequences of source symbols

whose code has total length k. As the code is uniquely decodable, there are at most Dk

such sequences, i.e., N(k) ≤ Dk. It is thus clear that the series 1+N(1)x+N(2)x2 + · · ·
converges for values of x < D; let F (x) be the sum of the series. Now, the fundamental

step in the proof is to consider how the possible N(k) sequences of k letters are obtained.

McMillan uses the following reasoning. Let Cr be the set of sequences of length k with

a first word of length r; these sets are disjoint because of the unique decodability. For the

first r letters of C(r) there are exactly w(r) different possibilities, the number of words

or r letters, while for the remaining k − r letters there are exactly N(k − r) different

combinations. So, we have

N(k) = w(1)N(k − 1) + w(2)N(k − 2) + · · ·+ w(lmax)N(k − lmax) (5.32)

The above equation holds for every k if one defines N(r) = 0 for negative r. Now, take

x < 1/D, multiply the above equation by xk and sum for k = 1 to infinity. We have

F (x)− 1 = F (x)Q(x). (5.33)
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But as F (x) is positive, Q(x) must be smaller than one. By continuity one clearly see that

Q(1/D) is at most 1, which is Kraft inequaliy.

It is interesting to focus the attention on the key point of this proof, which is essentially

the combination of eq. (5.32) with the requirement that N(k) ≤ Dk. In particular it is

implicitely established that the value of Q(1/D) determines how fast N(k) grows, and thus

if it is possible to have N(k) ≤ Dk asymptotically or not.

This basic idea is also used in the proof given by Karush, but in an easier way. Instead

of considering the set of code strings of length k, Karush considers the sequences of k
symbols of the source as explained in the previous section. After an accurate analysis it is

not difficult to realize that the proof given by Karush “only” has the advantage of relating

the asymptotic behavior4 of the sum 1 + N(1)D−1 + N(2)D−2 + ..N(klmax)D
−klmax to

the value of Q(1/D) in a more direct way. Thus, the two proofs both use the convergence

or the order of magnitude of the sum 1 + N(1)D−1 + N(2)D−2 + · · · in order to study

the asymptotic behaviour of N(k). We could then say that both proofs are based on a

combinatorial counting method for the evaluation of N(k) and by imposing the constraint

that N(k) ≤ Dk

It is interesting to find that the very same technique had already been used by Shannon

in Part I, Section 1 of [88] while computing the capacity of discrete noisless channels.

Shannon considers a device which is used to communicate symbols over a channel and

wants to study the number of messages that can be communicated per instant time. He

says: “Suppose all sequences of the symbols S1, . . . , Sn are allowed and these symbols

have durations t1, . . . , tn. What is the channel capacity? If N(t) represents the number of

sequences of duration t we have

N(t) = N(t− t1) + N(t− t2) + · · ·+ N(t− tn). (5.34)

The total number is the sum of the numbers of sequences ending in S1, S2, . . . , Sn and these

are N(t − t1), N(t − t2), . . . , N(t − tn), respectively. According to a well known result

in finite differences, N(t) is then asymptotic for large t to Xt
0 where X0 is the largest real

solution of the characteristic equation:

X−t1 + X−t2 + · · ·+ X−tn = 1 (5.35)

and therefore

C = log X0 (5.36)

It is not difficult to note that the result obtained by Shannon, if reinterpreted in a source

coding setting, is essentially equivalent to McMillan theorem. Indeed, suppose the device

considered by Shannon is a discrete time device, emitting a symbol from a D-ary alphabet in

every time instant, so that the symbols S1, S2, . . . , Sn are just D-ary words. First note that

Shannon’s tacit assumption is that the device produces messages that can be decoded at the

receiving point. We can then thus rewrite this implicit assumption by saying that symbols

4More precisely, in the expansion of (5.18) the coefficient of D−r is, in general, smaller than N(r) for values

of r larger than r/lmin, but this does not affect the asymptotic behavior of the sum for large k.
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S1, S2, . . . , Sn form a uniquely decipherable code. Let us now focus on the capacity of the

considered device. As the device sends one symbol from a D-ary alphabet at every instant,

it is clear, and it was surely obvious for Shannon, that the channel capacity is in this case at

most log D. This means that the obtained value of X0 above satisfies X0 ≤ D. But X0 is a

solution to (5.35), and the left hand side of (5.35) is nonincreasing in X . So, setting X = D
in (5.35), the Kraft inequality is easily deduced.

In other words, McMillan’s theorem was already “proved” in the Shannon paper, but it

was not explicitly stated in the source coding formulation. It is clear that the formulation

in the source coding setting, rather than in the channel coding one, is of great importance

by its own from an information theoretic point of view. From the mathematical point of

view, instead, it is very interesting to note that MacMillan proof is only a more rigorous and

detailed description of the counting argument used by Shannon. Mathematically speaking,

we can say that not only Shannon had already proved McMillan result, but that he had

proved it in few lines, in a simple and elegant way, using exactly the same technique used

by McMillan.

Now, note that Shannon did not state the above result as a theorem. In fact, he considered

the result only as a particular case, used as an example. He indeed started the discussion

with the clarification Suppose all sequences of the symbols S1, . . . , Sn are allowed, because

his main interest was in the general case where the sequences of symbols are produced with

some given constraints, as for example in the case of the detailed study of the telegraph in

that Section of his paper. The model used by Shannon for constraints is the following. “We

imagine a number of possible states a1, a2, . . . , am. For each state only certain symbols

from the set S1, S2, . . . , Sn can be transmitted [...]. When one of these has been transmitted

the state changes to a new state depending both on the old state and the particular symbol

transmitted”. Note that this is exactly the type of constraint that we have indicated as a

Markov model in the Mealy form, earlier in this chapter. The general result obtained by

Shannon and stated as Theorem 1 in [88] is the following

Theorem 5.4.1 (Shannon) Let b
(s)
ij be the duration of the sth symbol which is allowable in

state i and leads to state j. Then the channel capacity C is equal to log W0 where W0 is the

largest real root of the determinant equation:
∣

∣

∣

∣

∣

∑

s

W−b
(s)
ij − δij

∣

∣

∣

∣

∣

= 0. (5.37)

This theorem is well known in the field of coding for constrained systems (see for ex-

ample [63]) and can be considered as the channel coding precursor of the Mealy-form of

Theorem 5.3.6 exactly in the same way as the result obtained by eqs. (5.35) and (5.36)

is the precursor of McMillan theorem. We now prove that Theorem 5.4.1 can indeed be

used to deduce Theorem 5.3.6. We prove this fact by showing that, if the matrix Q de-

fined in Theorem 5.3.6 has spectral radius larger than 1, then the associated code cannot be
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uniquely decodable. In order to do that, we show that if such a code was decodable, then we

could construct a channel using a D-ary alphabet with a capacity larger than log D, which

is clearly impossible.

Let Q(1/W ) =
∑

s W−b
(s)
ij be the matrix considered in the determinant equation

(5.37). Note that this matrix Q(1/W ) reduces to be the matrix Q introduced in Theo-

rem 5.3.6 if we set W = D, i.e. Q(1/D) = Q. Suppose now that there exists a uniquely

decodable code for a constrained source such that the spectral radius of the matrix Q in

Theorem 5.3.6 is larger than 1. Then, as the code is uniquely decodable, we can construct

a discrete-time D-ary channel with channel symbols exactly equal to the codewords of the

given code. Then for this channel, with the above definitions, we have ρ(Q(1/D)) > 1.

Consider now the capacity of such a channel. The largest solution W0 of the determinant

equation (5.37) can also be considered as the largest positive value of W such that Q(1/W )
has an eigenvalue equal to 1. Consider thus the largest eigenvalue of Q(1/W ), i.e. the

spectral radius ρ(Q(1/W )). As the spectral radius of a nonnegative matrix decreases if any

of the elements of the matrix decreases, ρ(Q(1/W )) is a decreasing function of W . Then

clearly, as ρ(Q(1/D)) > 1, there exists a W > D such that ρ(Q(1/W )) = 1. But this

means that we have constructed a D-ary channel with capacity larger than log D, which is

clearly impossible. So, the initial hypothesis was wrong, and thus any decodable code for a

constrained source is such that the spectral radius of the matrix Q in Theorem 5.3.6 is not

larger than 1.

This shows that the results obtained by Shannon for the channel capacity evaluation in

his paper [88], actually correspond to very interesting results in the source coding setting,

which hide a generalized form of Kraft-McMillan theorem.
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Remote Image Registration

Change the viewpoint.

Look at it from every possible angle.

– Claude Shannon –

6.1 Introduction

In Chapters 2-4 we have presented the DSC paradigm and its application to video coding

in what is known as DVC. As we have clarified, most of the work has been done on the

problem of single source video coding, but even the problem of multiple video sources has

been recently considered as a relevant application (see for example [91]). For the problem

of multiple sources, the case of distributed coding of still images has probably received

more attention, and interesting contribution can be found in [95] and [114] as extensions

of the PRISM and Stanford architectures. A different perspective has been adopted instead

in [47, 49], where the the idea of coding in a distributed fashion the positions of objects

in images taken by different views, or the structure of the quadtree decomposition of those

images, has been investigated.

In Chapter 5, by taking into account the case of single source DVC, a study of an ab-

stract model for the use of DSC-like codes for sources with memory has been proposed.

In this chapter, instead, we want to consider another aspect of DVC which is more related

with the problem of the creation of side information at the decoder or, more precisely, with

the estimation at the decoder of the correspondences between frames or portions of frames.

A fundamental problem encountered in both fields of distributed image and video coding,

in fact, is the need of performing compensations at the decoder. In the case of single cam-

era video sequences, for example, a classic non-distributed coding technique consists in

applying motion compensation first and then encoding the resulting prediction error. In

a distributed system the motion compensation must be performed at the decoder, without

0This chapter includes research results to appear in [36].
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Figure 6.1: Basic idea of Remote Image Registration.

having access to an optimally predicted frame. A similar fact holds in the case of multiple

sources, where the problem of disparity compensation at the decoder is the equivalent of

the motion compensation of the single source case. This problem has been identified at

an abstract level in Section 4.2.2, where the general structure of DVC schemes has been

considered. There, the idea of sending some description D(X) of a frame X that would

allow the decoder to extract an approximation Ye of X from the prior side information Yp

has been proposed. In this chapter we study and design an example of such descriptions for

the case where the approximation Ye of X must be created at the decoder side by properly

applying shift, rotation, and scale operations to a prior side information frame Y , i.e., by

applying a (similarity) registration operation.

So, in this chapter, we do not focus on the problem of correcting the extracted side

information Ye to obtain the original frame X , but we focus instead on the problem of

finding a proper description of the frame X (at a very low rate) that can be used to perform a

registration at the decoder between the two images Y and X . We call this problem “Remote

Image Registration”, as we consider it to be a self contained problem, which is clearly

motivated by DVC techniques, but may find interesting applications in other different types

of distributed problems.

The problem that we consider can thus be summarized in the following way (see Figure

6.1). Two images X and Y are obtained by cropping a common scene, with possible rel-

ative shift, rotation and scale between the two cropping operations. Supposing that the Y
image is available at the decoder, we want to find an efficient strategy for communicating

to the decoder the shift, rotation and scale parameters of the image X with respect to Y .

This problem is decomposed in several phases using a Discrete Fourier Transform (DFT)
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representation. The simpler sub-problem of shift compensation is first considered, and a

detailed technique for the “distributed coding of shifts” is designed. Then, the problems of

distributed coding of rotation and scale are reduced to the previously studied shift problem

by proper transform operations, and the technique developed for the shift coding can thus

be applied one again. This shows in a way that the distributed coding of shift is the really

fundamental problem. Furthermore, we would like to clarify here that the shift registra-

tion is probably of much higher importance than the compensation of rotation and scale

also with respect to a number of applications. For example, in a video coding system, the

motion compensation operation can be seen as an extreme application of a shift registra-

tion technique at the block level, while rotation and scale are usually not considered even

in predictive techniques. So, in a practical DVC systems, we may try to use block-level

distributed coding of shifts to operate motion compensation at the decoder, but it would be

much more difficult to imagine of rotations and scale to be of some interest in that case. For

this reason, we will analyze with a greater detail the problem of shift coding and we will

devote a less detailed study to the rotation and scale extension.

In the whole chapter we use the following notations: ‘log(·)’ is the base-2 logarithm; for

an integer m, ‘{·}m’ indicates the modulo-m operation; the symbol ‘
2π
=’ indicates a modulo-

2π congruence and we consider phases always to take values on the interval [−π, π].

6.2 Distributed coding of shifts

In this section we develop a technique for the distributed coding of shifts in order to solve

the target application of detecting, at the decoder, the relative shift of a remote image X with

respect to the available side information image Y . We first study an “ideal” one-dimensional

problem, where shifts are circular and noiseless signals are used, introducing the main idea

of extraction of meaningful information from the DFT phase. Then, we extend the study to

the case of 2-dimensional signals and we consider more concrete scenarios where shifts are

not circular and images are affected by noise.

6.2.1 One-dimensional problem

Suppose we have two N -point signals X(·) and Y (·) which differ only by a circular shift s,

with 0 ≤ s < S, S < N , i.e.:

X(n) = Y ({n− s}N ), n = 0, 1, . . . , N − 1. (6.1)

For the sake of simplicity, let us consider the case when both N and S are powers of 2.

Suppose an encoder has to communicate X to a decoder, using Y as side information. If

Y is available to both encoder and decoder, and if s is uniformly distributed between 0

and S − 1, then log(S) bits are sufficient for encoding X , as it is actually only necessary

to specify the value of s. Suppose now Y is only available to the decoder and not to the

encoder. Supported by distributed source coding theory, one may wonder whether it is still
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possible to encode X - or equivalently s - using only log(S) bits. We now prove that this is

indeed possible and, in addition, that this can be done in different ways.

First note that if the shape of X and Y is a priori known to both encoder and decoder,

then the problem is quite trivial. It is only necessary that the encoder and the decoder agree

on one particular point p of the shape and use the following strategy. Let pX and pY be

the position of p in X and Y respectively; the encoder sends the value of {pX}S and the

decoder estimates s as s̃ = {pY −{pX}S}S . The obtained result satisfies 0 ≤ s̃ < S and it

is congruent to s modulo S, so that we necessarily have s̃ = s.

On the contrary, if the shape of X is not known a priori, the problem becomes more

interesting and it must be treated in a different way. An immediate idea is to work in the

DFT phase domain. Let X̂(·) be the DFT of X defined by

X̂(k) =

N−1
∑

n=0

X(n)e−j 2πkn
N , k = 0, . . . , N − 1. (6.2)

Let Ŷ (·) be accordingly the DFT of Y and, for every k, let ΦX̂(k) and ΦŶ (k) be the phase

of the coefficient X̂(k) and Ŷ (k) respectively. From the relative shift hypothesis in equation

(6.1), the phases of the DFT are related by the following equation

ΦX̂(k)
2π
= −

2πsk

N
+ ΦŶ (k). (6.3)

We now show how it is possible to extract few bits from the DFT phase so as to com-

municate the shift from encoder to decoder. First note that, if we take k = 1, we have

ΦX̂(1)
2π
= −2π

s

N
+ ΦŶ (1). (6.4)

Now, given that s < N , for every value of s the value on the right hand side of the eq.

(6.4) determines a different point in the range [−π, π], and the phases obtained for different

values of s differ by integer multiples of 2π/N . So, in theory, if a quantization qΦX̂(1)
of ΦX̂(1) into 2π/N -width intervals is known at the decoder, then by using the value of

ΦŶ (1) it is possible to recover the value of s. Of course, in this case, qΦX̂(1) takes on

N different values; anyway, given that s < S, only the value of {qΦX̂(1)}S is really

needed at the decoder. So, only log(S) bits are required in order to quantize ΦX̂(1) so

that the decoder can recover the value of s. A careful analysis shows that this method is

not substantially different, from a theoretical point of view, from the previously mentioned

technique involving the use of px and py . The advantage is that this second method can be

used unaltered independently from the shape of X .1

This strategy based on the quantization of ΦX̂(1), even if it is theoretically valid under

the assumed ideal hypothesis, has some disadvantages in terms of robustness, because it is

1Actually this is not true in some pathological cases. Indeed, if X̂(1) is exactly zero this method cannot be

applied. We do not consider this case, since this rarely occurs for practical sequence of signals we are interested

in.
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based on an arbitrarily precise evaluation of the phase of one coefficient. In the presence

of noise, or in the more concrete case where “non-circular” shifts are involved, some phase

“errors” are usually introduced, and in the above scheme even a small error can cause a

wrong extraction of the value of s.

Here we propose a different method to extract the shift value, which is based on a coarse

quantization of more coefficients, rather than on a fine quantization of only one coefficient.

The main idea is that if we take a signal and we shift it by one pixel, then by two and so on,

the phases of the coefficients of the DFT at different frequencies vary in different ways. For

example, the phase of X̂(N/2) changes by π radiants for every pixel shift. Said in other

way, the sign of ΦX̂(N/2) is kept unchanged if X is shifted by an even number of pixels

and it changes if X is shifted by an odd number of pixels. Thus we can use the sign of

ΦX̂(N/2) to detect if s is even or odd, i.e., to detect {s}2. Once we know the value {s}2
we would need to know the value of {s}4 and in order to do this we could use the phase of

ΦX̂(N/4), which has periodicity 4. The idea can then be iterated with the same logic for

the complete detection of s.

We give now a rigorous explanation of the proposed procedure. Let us consider the

phase of DFT coefficients taken at exponentially spaced positions, i.e.

ΦX̂(N/2),ΦX̂(N/4),ΦX̂(N/8), . . . ,ΦX̂(N/S). (6.5)

We show that a 1-bit quantization, namely quantizing the sign, of the above phases is suffi-

cient to recover the value of s at the decoder. Note that the total amount of required bits is

again log(S).
Let us write the binary representation of s as sσsσ−1 · · · s1s0, si ∈ {0, 1}, i = 0, . . . , σ.

First consider the N/2-th DFT coefficient. For this coefficient eq. (6.3) becomes

ΦX̂(N/2)
2π
= −πs + ΦŶ (N/2) (6.6)

2π
= −πs0 + ΦŶ (N/2). (6.7)

It is clear that when ΦŶ (N/2) is known, the sign of ΦX̂(N/2) uniquely determines the

value of s0. So, one bit extracted from ΦX̂(N/2) (i.e., the sign) allows to determine the least

significative bit of s at the decoder (see fig. 6.2(a) for an example). Now, by using an iterated

procedure, we show by induction that the binary representation of s can be reconstructed

from the signs of the considered coefficients (see Figures 6.2(b) and 6.2(c) for graphical

examples). In fact, supposing that the bits s0, s1, . . . , sh−1 has been determined using the

signs of ΦX̂(N/2),ΦX̂(N/22), . . . ,ΦX̂(N/2h), and consider the coefficient X̂(N/2h+1),
we have that

ΦX̂(N/2h+1)
2π
= −π

s

2h
+ ΦŶ (N/2h+1)

2π
= −πsh −

π

2h
{s}2h + ΦŶ (N/2h+1).

Now, clearly {s}2h = sh−1 · · · s1s0 is known to the decoder, so that the only unknown

term in the right hand side of the above equation is sh. So, again, the sign of ΦX̂(N/2h+1)
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Encoded sign of ΦX̂(N/2)

(a) Decoding of bit s0 = 1. Here Φ
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(N/2) =
Φ

Ŷ
(N/2)− π.

Re

Im
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Possible positions of X̂(N/4) given Ŷ (N/4) and s0
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(b) Decoding of bit s1 = 1. Here Φ
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(N/4) =
Φ

Ŷ
(N/4) + π/4.

Re

Im
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(c) Decoding of bit s2 = 0. Here Φ
X̂

(N/8) = Φ
Ŷ

(N/8)− 3π/8.

Figure 6.2: Procedure for the decoding of the first three bits of s. In this case we had s = 3.

Here, without loss of generality, we have represented the values of the DFT coefficients as

complex numbers with equal absolute value, so that they all lies on a circle and the phase

are easily studied.
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uniquely determines sh. This proves that the log(S) bits that represent the signs of the

phases ΦX̂(N/2i), i = 1, . . . , log(S), allow the decoder to reconstruct the value of s.

6.2.2 Two-dimensional problem

In this section we apply the theoretical development presented in the previous section to the

practical problem of encoding the relative shift between images. We first consider the ideal

case where an image X is obtained by applying a 2-dimensional circular shift to an N by N
image Y . If v = (r, c) is the shift vector, where 0 ≤ r < R and 0 ≤ c < C, with R < N
and C < N , the relation between the images is

X(n,m) = Y ({n− r}N , {m− c}N ), n,m = 0, 1, . . . , N − 1, (6.8)

and the relation between the 2-dimensional DFT’s is now given by

ΦX̂(k, l) = −j
2πkr

N
− j

2πlc

N
+ ΦŶ (k, l). (6.9)

It is easy to see from the above equation that the problems of determining r and c can

be solved in a separable fashion. In fact, by taking for example l = 0, we cancel the term

including c, and we reduce eq. (6.9) to an equivalent of eq. (6.3), where r plays the role of s.

So, by taking respectively l = 0 and k = 0, we can solve the problem of encoding/decoding

r and c independently. By applying the technique explained in the previous section, the only

required bits can thus be extracted from the DFT of X as the signs of the phases of pure

vertical and horizontal frequencies, i.e.,

ΦX̂(N/2, 0),ΦX̂(N/4, 0), . . . ,ΦX̂(N/R, 0), (6.10)

ΦX̂(0, N/2),ΦX̂(0, N/4), . . . ,ΦX̂(0, N/C). (6.11)

In this case, the total amount of required bits is log(R) + log(C). So, the 2-dimensional

problem in the ideal situation of noiseless circular shifts is solved exactly in the same way

as in the 1-D case.

6.2.3 A more realistic scenario: adding redundancy

Now we apply the above approach to a more realistic situation where the two images X and

Y are obtained by cropping a common scene from two shifted positions. In this case, with

respect to the ideal setting considered before, the shift between X and Y is not a circular

one; moreover, the two images are affected by noise. We model this fact by saying that there

is a scene z(n,m) and independent noises nx, ny such that

Y (n,m) = z(n,m) + ny(n,m), (6.12)

X(n,m) = z(n− r,m− c) + nx(n,m). (6.13)
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An important element to clarify is that, under these different assumptions, we are not any-

more interested in using exactly log(R) + log(C) bits in order to encode the shift. In fact,

due to the noise and to boundary effects, it is reasonable to consider more bits in order to

robustly encode the shift. Moreover, in this case, the values of R and C are assumed to be

much smaller than N , because when R and C get comparable to N , the overlap between the

X and Y image gets smaller and smaller. Finally, it is reasonable to assume that the number

of required bits to encode the shift may depend on the strength of the additive noise on the

X and Y images. So, for this practical situation, we relax the problem to more informal

constraints and we aim at finding a robust strategy in order to use a small number of bits to

encode the shift between the images.2

The main idea for encoding the shift in this practical situation, then, is to use the insight

given by the theoretical development proposed for the ideal case and “extend” the technique

by increasing its robustness. In order to do this, it is necessary to add redundancy to the

encoded data, as it is usually done in channel coding. In our scheme, when we considered

the phase relation expressed by eq. (6.9), we noted that it is possible to solve the problem

separately for r and c by putting l = 0 and k = 0 respectively, so as to use a minimum

number of bits. Now, given that we are looking for robustness, it is very useful to go in the

opposite direction and note the fact that when l and k are both different from zero the value

of the resulting phase is affected by both r and c. So, if instead of using only the coefficients

associated to vertical and horizontal frequencies, as in eq.’s (6.10), (6.11), we also consider

“diagonal” frequency phases of the form ΦX̂(N/2i, N/2j), we actually add some sort of

“parity-check” to the code.

We need to extend the initial idea and to consider the general case where we encode the

sign of the phases of coefficients ΦX̂(k, l) for values of k and l that are either 0 or powers

of 2. In this case the procedure for the decoding of the bits of the shift becomes much more

involved and it is not possible to use a decoding technique as the one described for the ideal

case. Here we actually find that the performance of the coding technique is strongly related

to the computational complexity of the decoder.

In our problem, we consider full search methods where all possible values of r and c are

tested so as to find the most plausible shift, doing the equivalent operation of a minimum

distance decoding in channel coding. Here we propose two different full-search methods

which have two different computational complexities for the decoder, the more complex

method having of course better performance.

The main idea, which is common to both decoding techniques, is that, theoretical dis-

cussions apart, we can see the bits extracted from the phase of the X image as a hash of the

image. At the decoder, what we want to do is to estimated the shift that, applied to Y , gives

an image with a hash similar to that of X . Actually, the image X and the shift-compensated

Y will always coincide only in the central part, as we cannot recreate at the decoder the

portion of the X image located on the disappeared boundary. So, in order to smooth the

boundary effects we can apply smoothing windows to the X and Y images. For the X

2We point out that, for e.g. a 256x256 image, reasonable values of R and C would need to be much smaller

than 128, and thus log(R) + log(C) bits would mean less than 14 bits.



Remote Image Registration 109

image, the way the windowing operation is performed is not an issue; we simply multiply

the X image by the window before performing the DFT operation. The way this smoothing

window is used at the decoder, instead, makes the difference between the complex and the

light registration methods proposed here.

We start by describing the optimal more complex technique, which is somehow also the

most obvious one. The decoder consider all possible pairs of (r, c) values; for every one

of them a circular shift by a (r, c) vector is applied to Y . The resulting image is multiplied

by the window so at to remove the boundary effects, it is transformed, and the signs of the

phase of the DFT coefficients are extracted. The Hamming distance of the obtained code

from the one extracted from X is then computed3, and the values of r and c that minimize

this distance are kept as best estimate of the true shift components. Note that with this

technique, when the correct value of r and c are tested, the shifted and windowed image Y
differs from the windowed X mainly only for the noise, the border effects being smoothed

by the window. This gives to the technique a great robustness. On the other hand, the main

disadvantage is that for every (r, c) pair a DFT must be computed for the Y image. This lead

to a very high computational complexity that may be considered as an intolerable drawback

of this method.

A different choice is to consider a method which has a much lower computational com-

plexity but, on the other hand, cannot reach the same performance of the previous one. In

this second scheme, the Y image is multiplied by the window only once, at the beginning

of the process, it is transformed, and the submatrix of meaningful coefficients is extracted.

Then, for every (r, c) pair, a circular shift on Y by a (r, c) vector is implemented in this

subfrequency domain by multiplying the coefficients by appropriate exponential factors.

The phase sign are then extracted and again the Hamming distance from the code of X is

computed. Again, the (r, c) pair that gives the minimum distance from the X code is kept

as estimate of the shift vector. Note that in this case only one DFT is computed, and the

operations required for every (r, c) pair have a much lower computational complexity with

respect to the previous method.

6.2.4 Experimental results

In order to show the effectiveness of the proposed method and to evaluate the performance

in a practical situation, we have run some experiments on test images, and we report here

one of these tests. We have only performed extensive simulations using the computationally-

light proposed scheme, as the computationally complex scheme requires too many operation

to extensively study the performance for different noise strength and shift amplitudes (see

Fig. 6.3 for an example of difference of performance of the two methods).

3From a theoretical point of view, the use of the Hamming distance is motivated if the phase noise associated to

the non-ideal scenario can be considered as an independent noise which induces a binary symmetric channel on the

space of the signs of the phases of the DFT coefficients. Note that using a Hamming code correspond to performing

a minimum distance hard-decoding of a binary codeword. Other decoding techniques, based for example on soft

decoding ideas or exploiting particular structures of the phase noise, are currently under investigation.
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In the experiment, we have taken the 512x512 “goldhill” image, and we have con-

structed the 256x256 X and Y images by cropping portions of goldhill and by adding inde-

pendent white gaussian noise to them. We have then adopted the computationally simplified

method and we have checked whether it gave the right result or not. The experiment was

performed by testing, for different number of bits used for the code, various shift vector

lengths and increasing noise amplitudes. The results are shown in Fig. 6.4, where we can

see that by increasing the number of bits of the code progressively from 25 to 81 we are

able to correctly detect shift vectors with increasing amplitudes and for increasing strength

of the noise.

(a) Image X (b) Image Y

Figure 6.3: Example of 256x256 X and Y images cropped from the 512x512 Goldhill

image. Here we have r = 21, c = 36 and nx and ny are independent white gaussian noises

with σnx
= σny

= 2. In this case 69 bits suffice to correctly detect the shift with the

computationally light decoder (in less than 1 second), while 39 bits suffice in the case of the

complex decoder (in more than 300 seconds).

6.3 Rotation and scale detection using the Fourier-Mellin

transform

6.3.1 From shift to rotation and scale

The ideas presented in the previous section for the distributed coding of relative shifts be-

tween images can be further investigated in the direction of an extension for the more gen-

eral problem where two images do not only differ for a relative shift, but also for rotations

and/or a scale factor. By properly operating on the DFT of the images, it is possible to

reduce scale and rotations to a shift problem in a proper non-linearly transformed domain.

In the field of image registration this idea has been initially proposed in [37], [5] and [38]

for the problem of combined translations and rotations. The extension to the case of scale

between images has then been studied in [25] and in [90] with the use of what is actually
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Figure 6.4: Successes (∗)/failures (◦) using the computationally light decoding of v, de-

pending on the amplitude of the shift |v| and on the noise strength (measured with σn) , for

different number of used bits. Images X and Y were obtained here by cropping the image

“Goldhill” at random positions. An asterisk indicates a success while a circle indicates a

failure. Note that for visual clarity the axis scale is different for different number of bits

used.
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known as a Fourier-Mellin transform. We refer to [24] for a survey of image registration

techniques.

The important fact of the use of the DFT for dealing with rotations and scale is that it is

possible to reduce these two operations to a shift operation in a proper transformed domain,

which is the log-polar domain we will now describe. Thus, the procedure described in the

previous section for the distributed encoding of shift can in principle be applied also to the

problem of distributed encoding of relative rotations and scale of an image X with respect

to a side information image Y available at the decoder.

Consider the case where the transformation from the images X to Y is a combination of

translation, rotation and scale. Consider for simplicity the case of noiseless images, where

images are considered now as continuous domain signals. Thus, for n,m real numbers we

can write the relation between the two images as

X(m,n) = Y (λ(m cos θ0 + n sin θ0)− r, λ(−m sin θ0 + n cos θ0)− c) (6.14)

If we compute the Fourier transform of these two signals in the continuous frequency

domain (i.e., for real k, l)we have

X̂(k, l) =
e−jφr,c(k,l)

λ2
Ŷ (λ−1(k cos θ0 + l sin θ0), λ

−1(−k sin θ0 + l cos θ0)) (6.15)

where φr,c(k, l) is the phase term due to the translation by the vector v = (r, c). If we take

the modulus of both sides of the above equation, we can remove this term and we obtain

|X̂(k, l)| =
1

λ2
|Ŷ (λ−1(k cos θ0 + l sin θ0), λ

−1(−k sin θ0 + l cos θ0))| (6.16)

So, by keeping only the modulus of the transforms, we have preserved the rotation and scale

relations between the images, momentarily disregarding any translational mismatch. Now,

by changing to polar coordinates, let us set X̃(ρ, θ) = |X̂(ρ cos θ, ρ sin θ)| and similarly

Ỹ (ρ, θ) = |Ŷ (ρ cos θ, ρ sin θ)|. Then, with some simple algebraic manipulations we have

X̃(ρ, θ) =
1

λ2
Ỹ (ρ/λ, θ − θ0) (6.17)

Thus, the relative rotation between the images is now reduced to a shift in the second vari-

able in the polar domain. The only non-translational deformation between the two obtained

signals is now due to the scaling. Now, by using a logarithmic scale for the radial coordinate

in the polar domain, once set X̄(ρ, θ) = X̃(eρ, θ) and Ȳ (ρ, θ) = Ỹ (eρ, θ) we obtain

X̄(ρ, θ) =
1

λ2
Ȳ (ρ− log λ, θ − θ0) (6.18)

So, the rotation and scale between the two images X and Y are reduced to a shift

between the two signals X̄ and Ȳ . Note that all the operations we have applied to the two

images X and Y can be performed separately on each one; thus the operation on the image
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X can be performed at the encoder without any need to know Y . So, we have reduced the

problem of distributed rotation and scale factor coding to a distributed coding of shifts and,

for this problem, we can use the same technique described in the previous section. Once

the decoder has recovered the rotation and the scale factor, by rotating and rescaling the

image Y it can obtain an image Y ′ that only differ from X by a shift, apart from the noise

inevitably due to resampling operations. As last step, then the decoder can recover also the

shift if it has been encoded with the distributed shift coding technique as described.

6.3.2 From the ideal case to the concrete problem

The above discussion, anyway, only holds rigorously in continuous space and frequency

domains and, moreover, under the hypothesis of noiseless images defined on an infinite

domain. For discrete images with limited support there are some issues to address in order

to implement an algorithm that might work.

The first point is that if the images X and Y are cropped versions from a same scene,

their spectrum is distorted by the effects of the window. The most relevant effect is that

some false vertical and horizontal frequencies appear in the spectrum, which are due to the

discontinuity that appear in the periodic replication of the image. In this case, if the two

images have a relative rotation with respect to the other in the sense that they are cropped

with a relative rotation from an infinitely wide scene, then those false vertical and horizontal

frequencies do not rotate with the remaining part of the spectrum, but instead stay in the

vertical and horizontal direction. So, detecting rotations in the spectrum domain is difficult

unless these frequencies are removed. In order to do that it is necessary to use a smoothing

window to the two images X and Y (such as for example a Tukey window) so that their

periodic replication do not contain significant false vertical and horizontal discontinuities.

This operation was already suggested for the coding of shifts presented in the previous

section in order to remove the boundary effects. Thus it can remain for the detection of the

rotational component.

Another problem is found in the change from Cartesian coordinates to Log-Polar coor-

dinates. In this case, we must consider that the resolution used in the resampling is very

important in order to preserve the information about rotation and scale. In particular, the

resolution used for the angular coordinate must be sufficient to detect the angular rotation

with the required resolution. This is not a great problem, however. A more important

problem is the logarithmically spaced resampling in the radial direction. Due to the fact

that we can only use integer coordinates in a digital representation of the image, the values

of ρ in eq. (6.18) are in practice always integers; given that our algorithm for distributed

coding of shifts is studied for the detection of integer shifts, we find that using that algo-

rithm we can only estimate log λ to the nearest integer value. If the logarithms are taken

to the base e, the resolution for the scale factor is defined by the interval [e⌊log λ⌋, e⌈log λ⌉]
or, in other words, the scale factors that can be detected by the algorithm are the values

. . . , e−2, e−1, 1, e, e2, . . .. It is important to consider that typically interesting values for λ
are values close to 1, and thus, using the base e cannot provide a good resolution for λ. In
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order to achieve such a good resolution it is necessary to use a small base µ for the loga-

rithmic resampling, in particular a base µ sufficiently small so as to have two consecutive

powers of µ sufficiently tight around λ. As a first approximation, we can consider that if we

take a base µ = 1 + ǫ, where ǫ is much smaller than 1, the detectable scale factors are the

values (1 + ǫ)k with integer k, which can be approximated at the first order as 1 + kǫ. So,

in order to have a resolution ǫ on the detectable scale factor we have to use a base 1 + ǫ in

the logarithmic scale of the radial coordinate.

The last point that is important to clarify is that once the spectrum of the images are

represented in the Log-Polar domain, in order to apply the distributed shift coding algorithm

it is again necessary to apply a windowing in order to reduce the boundary effects. In this

case, it is particularly important to perform this operation because the spectrum of natural

images in the Log-Polar domain is mostly concentrated around the axis ρ = 0, and rapidly

vanish for high values of ρ. This causes strong boundary effects because of the fact that

ideal shifts for the DFT phase are circular shifts, while here we have a non-circular shift.

This is the same problem already explained in the previous section where the windows were

applied directly on the images; here we only want to clarify that the boundary effects are

much more critical.

In the next section we give an example of how the proposed approach operate in order to

recover the rotation and scale of a couple of images. For the problem of distributed coding

of relative rotation and scale, with respect to the shift only problem, we found more difficult

to properly test the proposed approach with noisy images. Even for noiseless images, which

means images created by applying a rotation and a scale factor to a single initial image,4

the choice of some parameters such as the resolution in the resampling operations, the type

of window applied to the image and to the spectrum in the Log-Polar domain, seem to have

much more impact on the results. On the other hand, this is no surprise as the transfor-

mations applied to the images lead to an accumulation of boundary effects and sampling

artefacts that make the algorithm less robust. So, for this problem it is necessary to consider

possible ways of increasing the robustness by using more bits for the representation of the

phase informations (consider that by applying the algorithm as presented for the shift prob-

lem, encoding rotation and scale requires only about 100 bits for 512x512 images). This

aspect remains object of on-going research.

6.3.3 Experimental simulation

In this section we use a simulation example to give a step by step description of the opera-

tions involved in the distributed coding of rotation and scale.

Consider two images X and Y as shown in Figure 6.5. The Image Y is obtained by

rotating X of 10 degrees in the clockwise direction, and applying a scale factor of 1.25.

The spectrum of the two images in the Log-Polar domain is shown in Figure 6.6.

4Note that in this case there is actually at least a small noise due to the fact that images are resampled on

different grids. It is clear that a good interpolation technique must be used to resample the images during the

rotation and scaling operations in order to reduce this error.
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It is interesting to see that the spectrum of the X image presents two important peaks

in the directions of the vertical frequency. This is due to the fact that the sky in the top

of the X image and the ground on the bottom have different grey levels, and thus vertical

frequencies are generated in the periodic replication of the image. In the Y image this

frequency components are not as important as the sky is not present in the image. This shows

that the spectrum of the X and Y images in the Log-Polar domain do not simply differ for a

shift, but in fact different components appear. In order to remove these false frequencies, a

windowing has to be applied to both images. In Figure 6.7 the two images windowed with

a Tukey window are shown, and in Figure 6.8 their Log-Polar domain spectrum is shown.

In this case the vertical frequencies of image X have been removed and thus the two

spectrum are more similar, shift components apart. There is a problem here due to the fact

that the a great portion of the spectrum is concentrated at very low values of the ρ coordinate.

Due to this fact, as the scaling factor reduces to a shift along the ρ coordinate, there is in

this case a strong boundary effect. This means that the DFT’s of the Log-Polar spectra of

the two images do not differ only for a linear phase component. This is clearly visible in

Figure 6.10(a). So, before applying to the spectrum the distributed shift coding technique,

it is necessary to apply a further windowing operation. The so obtained spectrum can then

be considered mainly differing for a shift, and this is clearly visible in the phase difference

of the DFT as shown in Figure 6.10(b).

The distributed shift coding technique is thus applied to the spectrum signal shown in

Figure 6.9(a) which means that only the signs of the phase of certain coefficients of its DFT

are extracted at the encoder and sent to the decoder. In this case, we have used a total

amount of 100 bits for the encoding of the relative rotation and scale. The real rotation

between the images is 10◦, while the scale factor is 1.25. We have sampled both the θ and ρ
coordinates with 512 samples. This means that the interval between two samples has length

θmin = 0.7031◦. The integer multiples of θmin that are closest to the real values of the

rotation factor are 14θmin = 9.8438 and 15θmin = 10.5469. For the radial coordinate, then,

we have chosen µ = 1.0086. The integer powers of µ that are closest to the true scale factor

are µ25 = 1.2393, µ26 = 1.25 and µ27 = 1.2608. We remark here that once the base µ
is chosen, one still has a choice in how to sample the ρ coordinate; more precisely, the 512

samples can be taken at values ρ = µk+i, i = 0, . . . , 511, where k is any relative integer.

In order to have an effective algorithm it is convenient to choose k so as to spread the 512

samples in appropriate positions in the ρ axis. Here, for example we have chosen k = 130,

which spreads the samples from µ130 = 3.0521 to µ641 = 245.14, which is an appropriate

range given that the original image is a 512× 512 image.

Based on the signs received from the encoder as code of the rotation and scale factors,

the decoder can recover the linear component in the difference of the DFT’s phases of the

Log-Polar spectra, which correspond to detecting the linear component in the phase shown

in Figure 6.10(b) using only a small number of bits of the phase associated to 6.9(a). In

this experiment, the decoded value of the rotation is θ′ = 15θmin = 10.5469, which is very

satisfactory, even if it is not optimal in terms of distance from the real rotation factor, as

14θmin = 9.8438 would be a better estimate. The scale factor is in this case “correctly”
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recovered as λ′ = µ26 = 1.25.

Thus, the rotation and scale factors are extracted at the decoder, and the inverse opera-

tions can be applied to the Y image in order to register the rotation and scale. The obtained

image is shown in Figure 6.11(a), where only the shift component with respect to the X
image is present. This shift component is then detected at the decoder using the procedure

proposed in the Section 6.2, using the phase hash of the X image sent by the encoder. The

obtained shift-compensated image Y is shown in Figure 6.11(b).

In Figure 6.12(b) we can see the “prediction” error when the registered image Y is

used to predict at the decoder the X image. We can consider this signal as the actual

innovation of the image X with respect to the registered Y image, which corresponds to

the idea of conditional entropy H(X|Y ) in the information theoretic model of information

sources. So, if we consider the problem of communicating X from encoder to decoder, and

we consider the Slepian-Wolf setting of distributed coding, once the registration of Y has

been performed at the decoder as explained in this section, the amount of information to

be transmitted reduces from what is shown in Figure 6.12(a) to what is shown in Figure

6.12(b), which is a much smaller amount of information.
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(a) Image X . (b) Image Y .

Figure 6.5: X and Y images used in this example. Here the relative rotation is 10 degrees,

and the relative scale is 1.25.
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(a) Log-Polar spectrum of X .
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(b) Log-Polar spectrum of Y .

Figure 6.6: Spectrum of the two images in the Log-Polar domain; here ρ is the horizontal

component (the spectrum within every image is renormalized to its peak value).
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(a) Windowed image X . (b) Windowed image Y .

Figure 6.7: Images after windowing operation. Here we have used a Takey window.
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(a) Log-Polar spectrum of windowed X .
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(b) Log-Polar spectrum of windowed Y .

Figure 6.8: Spectrum of the two windowed images in the Log-Polar domain (the spectrum

within every image is renormalized to its peak value).
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(a) Windowed Log-Polar spectrum for X .
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(b) Windowed Log-Polar spectrum for Y .

Figure 6.9: Windowed spectrum of the two windowed images in the Log-Polar domain. The

signals now really differ mainly by a shift component.

(a) Phase difference without windowing. (b) Phase difference with windowing.

Figure 6.10: Phase difference of the Fourier transform of the Log-Polar spectrum of the

two images. In Figure 6.10(a) the phase difference of the DFT’s of the spectrum signals of

Figure 6.8 is shown, while 6.10(b) refers to the spectrum signals of Figure 6.9
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(a) Rotation and scale registered image Y . (b) Completely registered image Y .

Figure 6.11: Rotation and scale registered image Y , and successive shift aligned image.

(a) Image X . (b) Prediction error after registration of Y .

Figure 6.12: Comparison between original image X and prediction error after compensation

at the decoder.



Conclusions and Perspectives

Signal representation and coding techniques have been developing in many directions in the

last years. In this work we have studied some developments of topics that have not received

yet the appropriate attention in the community or that have only emerged recently and are

thus still in a very early stage of research.

In particular, we have studied the problem of signal approximations under the l∞ norm,

focusing on the construction of algorithms and methods for the approximation in linear

spaces and in piecewise linear spaces. In detail, for the case of first order approximations,

we have proposed an efficient algorithm based on geometric considerations that gives much

efficient procedure for the construction of optimal approximations. Furthermore, we have

developed algorithms for the construction of minimal and optimal approximation to a given

signal within the space of piecewise approximations in linear spaces. We have addressed

the problem of the encoding of the obtained approximations and we have shown that the so

called pivot points represent a useful tool for this aim.

Within this topic, an important future topic of research is the development of theoretical

studies of the performance of lossy coding techniques in a rate distortion setting under the

l∞ norm. We point out that rate distortion theory for this particular type of distortion has

received almost no interest to the present time. Only first attempts to the understanding of

the basic notions have been considered, for example in [97], where the rate for the lossy

representation of a memoryless source within a given constraint is considered. However, no

study of the complete rate distortion function is available, neither the more interesting case

of sources with memory has been considered up to now. Note that the use of approximations

in linear spaces we have considered in our study is motivated by the implicit assumption

that we are working with signals with memory. For memoryless source, indeed, the use of

piecewise approximations is not suitable. Within this context it is interesting to consider

the use of approximations in linear spaces as a case of transform coding. So, while the use

of transform coding techniques has been widely investigated, from the point of view of the

rate distortion analysis, for the case of the l2 norm, no such theoretical studies has been

considered for the case of the l∞ norm.

In this work, after the introduction of DSC and DVC has been given, a study of prob-

lems related to the DSC paradigm and its use in the video coding have been provided in

different directions. For these problems, also, we have identified some underlying aspects
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that we have independently studied as proper topics in image and video processing or from

and information theoretic point of view. In particular, we have provided a detailed descrip-

tion of the relationship between the hypothesis considered for the development of DSC and

the concrete operational situation where one wants to apply DSC to video coding. The

understanding of the problems of correlation estimation and of the use of feedback chan-

nels in different situations, such as in single camera systems or in multicamera systems, is

important for the future development of this field.

A theoretical study of the use of the DSC approach to the problem of coding sources

with memory has been provided. Interestingly, from the information theoretic point of

view, the use of DSC for this kind of problems reduces to the use of codes that are not

necessarily decodable for every type of sources, but are instead decodable when the memory

of the source is used as a priori information at the decoder. So, the concept of unique

decodability has been revisited and interesting consequences has been pointed out in the

case when unique decodability of codes is considered with respect to constrained sources.

In particular, we have shown that the conditions for optimality of a code have not still been

well clarified up to now in the information theoretic literature, as we have provided examples

of sources with associated codes such that the code for any finite number of symbols requires

a number of bits strictly smaller than the entropy of those symbols. We have also provided a

modified Kraft inequality which represents a necessary condition for a set of integers to be

word lengths of a uniquely decodable code. This condition is not in general sufficient for the

construction of a uniquely decodable code with such integers as code word lengths and we

have thus developed a modified Sardinas-Patterson test for testing the unique decodability

of a given set of codewords. Further work in this direction, however, remains to be done.

The more general problem of finding the optimal code for a given constrained source is

indeed not solved, and it would be interesting to further investigate the relation between the

developed study of coding constrained sequences with the more consolidated field of coding

for constrained systems [63].

Another contribution of this work has been focusing on the topic of remote image regis-

tration. This problem arises as a key problem in the field of DVC, and it is related to the idea

of correlation as discussed in Chapter 4. In particular, it is important to investigate efficient

encoding techniques that allow the decoder to recover the correspondences between the im-

age X to be transmitted and the side information Y . We would like to underline that, even

if we have introduced this topic as a problem related to the DVC field, it can be considered

to be of significant importance by its own, as an interesting research field. In this work we

have provided a first study based on the insight given by theoretical arguments, which reveal

promising techniques for the remote registration of shift, rotation and scale factors between

images. The study can however be further developed in order to consider more general

registration problems, from non linear deformations to the more complicated problem of

“local registrations”, that is encountered for example in a motion compensation operation.

Consider, as a further investigation in this direction, the problem of finding correspondence

between images that represent a 3-dimensional scene taken from different positions ad with

different directions. In this case, the matching between the views, in a classic setting where
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both images are available in one point, is based on the extraction and use of feature points

that are used for a first matching in order to find correspondences. Further refinement is

then performed based on the texture of the images. In a distributed setting, where images

are not available at the same point, this approach can be considered as an interesting starting

point. In order to perform the first matching operations, only a subset of the whole image

information is used, which means that few bits have to be sent for this first step. So, even

this problem can be considered in the setting of remote image registration. In general, what

is important is to study the most effective technique for extracting the meaningful informa-

tion used for finding the matching. With respect to distributed video coding, furthermore,

it is necessary to incorporate the use of this techniques in a complete coding setting. This

means that after the registration information has been sent to the decoder, some Wyner-Ziv

information, generated as parity bits at the encoder, has to be sent in order to correct the

“compensated” side information and obtain a better reconstruction of the original image

available at the encoder.
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