INFORMATION THEORY

Marco Dalai

DII - Office 6

Email: marco.dalai@unibs.it Tel.: 0303715847 <u>Office hours: send me an email</u>

Teaching Materials

• Textbook:

Elements of Information Theory, Thomas M. Cover, Joy A. Thomas, ed. John Wiley & Sons. (1-st or 2-nd edition)

- It covers "almost" everything
- Available in our library
- Source of many problems/handouts available online
- Additional very interesting topics included (Gambling, Stock Market, Statistics, Kolmogorov Theory...)

Teaching Materials

Other books:

- Robert. G. Gallager, Information Theory and Reliable Communication
- Robert M. Fano. *Transmission of Information: A Statistical Theory of Communications*.
- Andrew J. Viterbi, Jim K. Omura. *Principles of Digital Communication and Coding*
- Robert Ash, Information Theory
- John Pierce, An Introduction to Information Theory
- David MacKay, Information Theory, Inference, and Learning Algorithms, available online for free

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

Shannon's seminal paper:

A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948. http://www.essrl.wustl.edu/~jao/itrg/shannon.pdf

Exam

- Written exam covering both "theory" and "practice"
- Possible oral examination
- Optional project for 0 to 3 additional points

Now... a preview

Here they are

Here they are

Is this 5GB of information?

Language is redundant... how many bits are actually needed?

10% errors

Did we really send 50 bits?

10% errors

Did we really send 50 *bits*? Maybe 45?

10% errors

Did we really send 50 *bits*? Maybe 45?

Loss of bits?

10% errors

Did we really send 50 *bits*? Maybe 45?

> Loss of *bits?* Loss of *information*?

Calt me as foon as porsibli

Calt me as foon as porsibli

Calt me as foon as porsibli

Calt me as foon as porsibli

Calt me as foon as porsibli

Communication Systems

C. E. Shannon, 1948

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. [...]

The significant aspect is that the actual message is one selected from a set of possible messages."

Communication Systems

(....before 1948)

Communication systems were already used extensively:

- Telegraph (Morse, 1830)
- Telephone (Meucci, 1871 Bell, 1876)
- Wireless Telegraph (Marconi, 1887)
- AM radio (early '900)
- Television (1925-1927)
- FM radio (Armstrong, 1936)
- Pulse-Coded Modulation (Reeves, 1937-1939)
- Spread Spectrum ('40s)

Communication Systems

- ...but there was no solid theory
 - Many heuristic results were in use
 - Few theoretical limits were known
 - It was not easy to understand the efficiency of used systems
- In 1948 Shannon gave birth to a whole new science "The Mathematical Theory of Communication ... came as a bomb" J. R. Pierce
 - He defined a measure of information
 - He found theoretical limits for the performance of communication and coding systems

Hartley 1928

... 2 bits/symbol Clear!

AABADAAABBCACDBA

... 2 bits/symbol Clear!

AABADAAABBCACDBA

A A B A D A A A B B C A C D B A 0 0 10 0 111 0 0 0 10 10110 0 11011110 0

... 7/4 bits /symbol Better!

A A B A D A A A B B C A C D B A 0 0 10 0 10 10110 11011110 0

... 7/4 bits /symbol Better!

A A B A D A A A B B C A C D B A 0 0 10 0 10 10110 11011110 0

... 7/4 bits /symbol Better!

AABADAAABBCACDBA ... 7/4 bits /symbol 0 10 0 111 0 0 0 10 10110 0 11011110 0 0

Better!

A A B A D A A A B B C A C D B A 0 0 10 0 111 0 0 0 10 10110 0 11011110 0

Information

Information

Information

Transmission of Information

Transmission of Information

Hamming 1950

Hamming 1950

parity bits ... redundancy

Error protection

Code bits

Rate=4/7

0110110

Code bits sent

It cannot correct two errors!

It cannot correct two errors!

It cannot correct two errors!

I am left with nearly 6% of errors

 \approx 0.5714 bits/pulse

I am left with nearly 6% of errors

Rate=4/7 \approx 0.5714 bits/pulse

Is it possible to do better?

Rate=4/7

I am left with nearly 6% of errors

Is it possible to do better?

Channel

I am left with nearly 6% of errors

Is it possible to do better? With more delay and complexity YES! Shannon 1948

Transmission of Information

Transmission of Information

Overview

Information Measures

Entropy, Mutual Information, Entropy Rate, their properties...

Source Coding

How much can we compress a source? What is the optimal code? Some practical examples...

Channel Coding

How much information can we send through a channel? ... Theory, no practical examples here